China OEM Small Planetary Gearboxes with 3V Suitable for Hairdressing Equipment automatic planetary gearbox

Product Description

Small Planetary Gearboxes With 3V Suitable For Hairdressing Equipment
 

Product Parameters

1)Specification

Model Application Parameters Rated Torque of Gear Box Instant Torque of Gear Box Gear Ratio Gear Box Length
L1
Rated At No Load At Rated Load Overall Length
L
Voltage Speed Current Speed Current Torque
VDC rpm mA rpm mA gf.cm mN.m mm gf.cm gf.cm mm
ZWBPD571571-102 3.0 169 80 142 215 86 8.4 30.9 1300 4000 102 15.9
ZWBPD571571-151 3.0 114 80 96 215 127 12.5 1300 4000 151
ZWBPD571571-168 3.0 98 80 86 220 106 10.4 34 1300 4000 168 19
ZWBPD571571-249 3.0 66 80 58 220 158 15 1300 4000 249
ZWBPD571571-368 3.0 45 80 39 220 233 23 1300 4000 368
ZWBPD571571-546 3.0 30 80 27 220 346 34 1300 4000 546
ZWBPD571571-809 3.0 20 80 18 220 512 50 1300 4000 809

above specifications just for reference and customizable according to requirements.Integrated Drive Control Module.

Please let us know your requirements and we will provide you with micro transmission solutions.

2)2D Drawing

Detailed Photos

Application

Smart wearable devices   watch,VR,AR,XR and etc.
Household application kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc.
communication equipment 5G base station,video conference,mobile phone and etc.
Office automation equipments   scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine,  screen, lifting socket,  display,notebook PC and etc.
Automotive products  conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc.
Toys and models  radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc.
Medical equipments  blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc.
Industrials   flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc.
Electric power tools  electric drill, screwdriver,garden tool and etc.
Precision instruments  optics instruments,automatic vending machine, wire-stripping machine and etc.
Personal care tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc.
Consumer electronics camera, mobile phone,digital camera, automatic retracting device,camcorder,  kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc.
robots educational robot, programming robot, medical robot, escort robot and etc.

Company Profile

HangZhou CZPT Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly. 

Workshop

Testing Equipment

1) Competitive Advantages

  • 1) Competitive Advantages
    19+year experience in manufacturing motor gearbox
    We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
    Competitive Price
    Product Performance: Low noise, High efficiency, Long lifespan
    Prompt Delivery: 15 working days after payment
    Small Orders Accepted

 2) Main Products

  • Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,

  • Customized worm and gear transmission machinery;
  • Precise electromechanical motion module;
  • Precise component and assembly of plastic and metal powder injection.

Our Services

  • ODM & OEM
  • Gearbox design and development
  • Related technology support
  • Micro drive gearbox custom solution

Packaging & Shipping

1) Packing Details

packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.

2) Shipping Details

samples will be shipped within 10 days;
batch order leading time according to the actual situation.

Certifications

Certifications

We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).

and more…

FAQ

FAQ

1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.

2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.

3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.

4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.

5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.

6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide. 

7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.

8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.

9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.

10. How do contact us ?
 Please send an inquiry

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Hairdressing Equipment
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Drip-Proof
Number of Poles: 2
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetarygearbox

Types, Applications, and Lubrication of Planetary Gearboxes

A Planetary Gearbox is a device that can be used in a variety of applications. Their reduction ratios depend on the number of teeth in each gear. In this article, we will discuss the types, applications, and lubrication of planetary gearboxes. Hopefully, this article will be of help to you. If not, you can check out this article and discover more about this fascinating machine. There are many different types of planetary gearboxes.

Applications of planetary gearboxes

The planetary gearbox is a popular option for applications requiring precise positioning. Applications of the planetary gearbox range from plastic machinery to agricultural equipment, from goods & personnel lifts to industrial robotics. Some of the industries that benefit from this type of gearbox include robotics, intra-logistics, robotics for industrial automation, and medical equipment. Increasing automation is also fueling the growth of the industrial planetary gearbox market in APAC.
The compact design of planetary gears makes them excellent for reducing load inertia and maximizing torque. However, some applications require additional lubrication for sustained performance or high speeds. CZPT uses CZPT in its planetary gearboxes. In addition, lubrication prevents gear wear and minimizes noise and vibration. The planetary gearbox is also easy to install, thanks to its low-mass-inertia design.
Another application of the planetary gearbox is in axles and transfer cases. The planetary gear architecture consists of a sun gear, also called the central gear, and a ring-gear with internal teeth that are concentric to the sun gear. The two gears are connected via a carrier, and the output shaft is positioned on the ring-gear carrier. The gearbox can be configured in a variety of ways, depending on the speed-ratio requirements.
The planetary gear train is similar to that of a solar system. It comprises a sun gear and two or more outer gears, ring gear and carrier assembly. In this configuration, the outer gears are connected via a carrier and a ring gear. The planet gears are in constant mesh with each other, and power applied to one of these members will rotate the whole assembly. They are a very efficient choice for many applications.

Types

There are three types of planetary gearboxes, depending on their performance and efficiency. The basic model is highly efficient and transmits up to 97% of power input. Depending on the speed and torque that need to be transmitted, planetary gearboxes are used in many different applications. A planetary gearbox can reduce the speed of a roller or produce a more precise level of movement. Using a planetary gearbox for your printing press, for example, will maximize your gear transmission ratio.
This market research report analyzes the factors influencing the market for Planetary Gearboxes, as well as their sales and revenues. It also highlights industry trends and details the competitive landscape. It also provides a comprehensive analysis of the Planetary Gearbox industry and its drivers and restraints. It provides detailed information on the market size and future growth prospects. The study also includes an extensive discussion of the competitive landscape, identifying the top companies and key market players.
A planetary gearbox is often used to manufacture complicated machines. These gears are usually made of high-quality steel, which makes them extremely durable. Planetary gearboxes can also be used in the production of heavy machine elements. There are many benefits of a planetary gearbox, including its compactness and low mass inertia. The main advantage of a planetary gearbox is its ability to distribute torque. Compared to a normal gearbox, planetary gearboxes can provide torque that is nearly three times higher than its conventional counterpart.
The three main types of planetary gears are the single-stage, compound, and multi-stage. The general concept of a planetary gear is referred to as a compound planetary gear. This means that planetary gears are made up of one of these three basic structures: a meshed-planet structure, a shaft, and a multi-stage structure. This type of gear has multiple stages and is particularly useful for fast-dynamic laser cutting machines.
planetarygearbox

Design

A planetary gearbox is similar to a car’s transmission. All of its gears must have a certain number of teeth and be spaced equally apart. The teeth of a planet must mesh with the gears of the ring and sun to be functional. The number of teeth needed will depend on the number of planets and their spacing. This equation is a good starting point for designing a gearbox.
The dynamic properties of planetary gears are investigated using a parametric model. The stiffness of the mesh changes as the number of gear tooth pairs in contact varies during the gear rotation. Small disturbances in design realizations cause nonlinear dynamics, which results in noise and vibrations in the gear transmission. A mathematical system describing this process is developed using the basic principles of analytical mechanics. This mathematical model can be used to optimize any planetary gear.
This analysis assumes that the sun gear and planet gears have the same design modulus, which is a fundamental requirement of any mechanical gear. In reality, the ratio of these two gears is 24/16 versus -3/2. This means that a planetary gearbox’s output torque is 41.1 times the input torque. Considering this factor, we can make an accurate estimate of the total torque. The planetary gears are mounted face-to-face and connected to an electric motor.
A planetary gear set has to have a certain number of teeth that are odd or even. One way to overcome this issue is to double the number of teeth on the sun gear and the annulus gear. This will also solve irregularities. Another way to design a planetary gear set is to use the appropriate diametral pitch and module. There are many planetary gear sets available on the market, so it pays to understand the differences.

Lubrication

Lubrication for Planetary Gearboxes is important for the smooth functioning of the gear. Planetary gears are subjected to high levels of friction and heat, so they require regular lubrication. The gear housing is designed to dissipate heat away from the gear, but heat can still enter the gear, which can result in a poor lubrication condition. The best lubrication solution is synthetic oil, and the gear should be refilled with a minimum of 30 percent oil.
When lubricating a planetary gearbox, it is important to note that hydraulic oil is not suitable for planetary gearboxes, which cost over $1500. Hydraulic oil does not have the same viscosity and behavior with temperature fluctuations, making it less effective. The planetary gearbox may also overheat if a hose is not provided for case draining. A case drain hose is essential to prevent this from happening, because hot oil can cause overheating of the gearbox and damage to the gears.
Oil delivery conduits are positioned between each pair of planet gears. Each oil delivery conduit directs fresh oil toward the sun gear and the planet gear. The oil then disperses and exits from the gear train with considerable tangential velocity. The oil is redirected into a collection channel (56). The preferred embodiment uses herringbone gears, which pump oil axially outward into the channels.
The best way to choose the right type of lubrication is to consider its viscosity. Too high a viscosity will prevent the lubricant from flowing properly, which will cause metal-to-metal contact. The oil must also be compatible with the gearbox temperature. A suitable viscosity will increase the efficiency of the gearbox and prevent downtime. A reliable gearbox will ultimately result in higher profits and fewer costs.
planetarygearbox

Applications

This report examines the Industrial Planetary Gearbox Market and its current trends. It identifies the pre and post-COVID-19 effects of the industry. It outlines the advantages and disadvantages of the industrial planetary gearbox market. The report also explains the diverse financing resources and business models of the market. It includes the key players in the industry. Hence, it is essential to read this report carefully.
The report includes analysis and forecasts of the global market for planetary gearbox. It includes the product introductions, key business factors, regional and type segments, and end-users. It covers the sales and revenue of the market for each application field. The report also includes the regional and country-level market data. It also focuses on the market share of the key companies operating in the industry. It covers the competitive scenario in the global planetary gearbox market.
Another popular application for planetary gearboxes is in the toy industry. It is possible to design toys that look stunning with planetary gear systems. In addition to toys, clock makers also benefit from the planetary arrangement. In addition to producing a good-looking clock, this gearbox can reduce inertia and improve its efficiency. The planetary gearbox is easy to maintain, which makes it a good choice for clock applications.
In addition to traditional gear reductions, planetary gears are also used for 3D printing. Their huge gear ratio makes 3D printing easier. Furthermore, planetary gears are used to drive stepper motors, which turn much faster and produce a desired output. There are numerous industrial uses for planetary gearboxes. This article has explored a few of the most common ones. And don’t forget to explore their uses.

China OEM Small Planetary Gearboxes with 3V Suitable for Hairdressing Equipment   automatic planetary gearbox	China OEM Small Planetary Gearboxes with 3V Suitable for Hairdressing Equipment   automatic planetary gearbox
editor by CX 2023-10-19

China Standard Best Price of P Series Planetary Gearbox for Concrete Mixer 1400HP Coaxial Windmill Gearbox Planetary Gearbox Reduction 1000nm with Best Sales

Product Description

Product Description

1.P series planetary gear reducer is widely used in metallurgy , mining, lifting and transport , electricity, energy , building

materials, light industry, transportation and other industrial sectors.

2. P series planetary gear involute planetary gear transmission , within a reasonable use, external gear , power split .

3. The planetary gear modular design changes can be combined according to customer requirements.

4.Carburized gears are used to obtain high- hard wear-resistant surface , all the heat treatment after grinding gear teeth ,
reduce noise , improve the overall efficiency and service life.

5. Hight quality gear reducer , small transmission ratio range , high efficiency, smooth operation, low noise adaptability and
other characteristics .

If you need to customize, please click here

Speed ratio range 

basic type 25 ~ 4000

 torque range

2.6 ~ 900knm

power range

22 ~ 1920kw

Installation form:

1. Horizontal installation / foot installation 2. Vertical installation / flange installation 3. Torsion arm installation.

Output mode

1. Hollow output shaft with shrink disc 2. CZPT output shaft with flat key 3. Hollow shaft with involute spline 4. CZPT shaft with involute spline

1 . Input: concentric shaft input , the helical gear input , bevel – helical gear input, bevel gear input.
2 . Output: the splined inner, hollow shaft shrink disc, splined outer, CZPT shaft flat key .
3.The planetary gear involute planetary gear transmission, within a reasonable use of external gear, power split. Therefore,light weight, small size, transmission ratio range, high efficiency, smooth operation, low noise, strong adaptability and other
characteristics.
4 . Box with ductile iron, greatly improving cabinet rigidity and shock resistance.
5 . Modular design , according to customer requirements to change the combination types .
6 . The installation forms : horizontal and vertical installation, torque arm mounting
7 . Combined with R series , K series to get greater ratio .

Detailed Photos

 

For more models or customization, please click here!

Click on the picture below for details

MOREPRODUCTS

 

 

 

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 1500/Piece
1 Piece(Min.Order)

|
Request Sample

planetarygearbox

Planetary Gearbox

This article will explore the design and applications of a planetary gearbox. The reduction ratio of a planetary gearbox is dependent on the number of teeth in the gears. The ratios of planetary gearboxes are usually lower than those of conventional mechanical transmissions, which are mainly used to drive engines and generators. They are often the best choice for heavy-duty applications. The following are some of the advantages of planetary gearboxes.

planetary gearboxes

Planetary gearboxes work on a similar principle to solar systems. They rotate around a center gear called the sun gear, and two or more outer gears, called planet gears, are connected by a carrier. These gears then drive an output shaft. The arrangement of planet gears is similar to that of the Milky Way’s ring of planets. This arrangement produces the best torque density and stiffness for a gearbox.
As a compact alternative to normal pinion-and-gear reducers, planetary gearing offers many advantages. These characteristics make planetary gearing ideal for a variety of applications, including compactness and low weight. The efficiency of planetary gearing is enhanced by the fact that ninety percent of the input energy is transferred to the output. The gearboxes also have low noise and high torque density. Additionally, their design offers better load distribution, which contributes to a longer service life.
Planetary gears require lubrication. Because they have a smaller footprint than conventional gears, they dissipate heat well. In fact, lubrication can even lower vibration and noise. It’s also important to keep the gears properly lubricated to prevent the wear and tear that comes with use. The lubrication in planetary gears also helps keep them operating properly and reduces wear and tear on the gears.
A planetary gearbox uses multiple planetary parts to achieve the reduction goal. Each gear has an output shaft and a sun gear located in the center. The ring gear is fixed to the machine, while the sun gear is attached to a clamping system. The outer gears are connected to the carrier, and each planetary gear is held together by rings. This arrangement allows the planetary gear to be symmetrical with respect to the input shaft.
The gear ratio of a planetary gearbox is defined by the sun gear’s number of teeth. As the sun gear gets smaller, the ratio of the gear will increase. The ratio range of planetary gears ranges from 3:1 to ten to one. Eventually, however, the sun gear becomes too small, and the torque will fall significantly. The higher the ratio, the less torque the gears can transmit. So, planetary gears are often referred to as “planetary” gears.
planetarygearbox

Their design

The basic design of a Planetary Gearbox is quite simple. It consists of three interconnecting links, each of which has its own torque. The ring gear is fixed to the frame 0 at O, and the other two are fixed to each other at A and B. The ring gear, meanwhile, is attached to the planet arm 3 at O. All three parts are connected by joints. A free-body diagram is shown in Figure 9.
During the development process, the design team will divide the power to each individual planet into its respective power paths. This distribution will be based on the meshing condition of all gears in the system. Then, the design team will proceed to determine the loads on individual gear meshes. Using this method, it is possible to determine the loads on individual gear meshes and the shape of ring gear housing.
Planetary Gearboxes are made of three gear types. The sun gear is the center, which is connected to the other two gears by an internal tooth ring gear. The planet pinions are arranged in a carrier assembly that sets their spacing. The carrier also incorporates an output shaft. The three components in a Planetary Gearbox mesh with each other, and they rotate together as one. Depending on the application, they may rotate at different speeds or at different times.
The planetary gearbox’s design is unique. In a planetary gearbox, the input gear rotates around the central gear, while the outer gears are arranged around the sun gear. In addition, the ring gear holds the structure together. A carrier connects the outer gears to the output shaft. Ultimately, this gear system transmits high torque. This type of gearbox is ideal for high-speed operations.
The basic design of a Planetary Gearbox consists of multiple contacts that must mesh with each other. A single planet has an integer number of teeth, while the ring has a non-integer number. The teeth of the planets must mesh with each other, as well as the sun. The tooth counts, as well as the planet spacing, play a role in the design. A planetary gearbox must have an integer number of teeth to function properly.

Applications

In addition to the above-mentioned applications, planetary gearing is also used in machine tools, plastic machinery, derrick and dock cranes, and material handling equipments. Further, its application is found in dredging equipment, road-making machinery, sugar crystallizers, and mill drives. While its versatility and efficiency makes it a desirable choice for many industries, its complicated structure and construction make it a complex component.
Among the many benefits of using a planetary gearbox, the ability to transmit greater torque into a controlled space makes it a popular choice for many industries. Moreover, adding additional planet gears increases the torque density. This makes planetary gears suitable for applications requiring high torque. They are also used in electric screwdrivers and turbine engines. However, they are not used in everything. Some of the more common applications are discussed below:
One of the most important features of planetary gearboxes is their compact footprint. They are able to transmit torque while at the same time reducing noise and vibration. In addition to this, they are able to achieve a high speed without sacrificing high-quality performance. The compact footprint of these gears also allows them to be used in high-speed applications. In some cases, a planetary gearbox has sliding sections. Some of these sections are lubricated with oil, while others may require a synthetic gel. Despite these unique features, planetary gears have become common in many industries.
Planetary gears are composed of three components. The sun gear is the input gear, whereas the planet gears are the output gears. They are connected by a carrier. The carrier connects the input shaft with the output shaft. A planetary gearbox can be designed for various requirements, and the type you use will depend on the needs of your application. Its design and performance must meet your application’s needs.
The ratios of planetary gears vary depending on the number of planets. The smaller the sun gear, the greater the ratio. When planetary stages are used alone, the ratio range is 3:1 to 10:1. Higher ratios can be obtained by connecting several planetary stages together in the same ring gear. This method is known as a multi-stage gearbox. However, it can only be used in large gearboxes.
planetarygearbox

Maintenance

The main component of a planetary gearbox is the planetary gear. It requires regular maintenance and cleaning to remain in top shape. Demand for a longer life span protects all other components of the gearbox. This article will discuss the maintenance and cleaning procedures for planetary gears. After reading this article, you should know how to maintain your planetary gearbox properly. Hopefully, you can enjoy a longer life with your gearbox.
Firstly, it is important to know how to properly lubricate a planetary gearbox. The lubricant is essential as gears that operate at high speeds are subject to high levels of heat and friction. The housing of the planetary gearbox should be constructed to allow the heat to dissipate. The recommended oil is synthetic, and it should be filled between 30 and 50 percent. The lubricant should be changed at least every six months or as needed.
While it may seem unnecessary to replace a planetary gearbox, regular servicing will help it last a long time. A regular inspection will identify a problem and the appropriate repairs are needed. Once the planetary gearbox is full, it will plug with gear oil. To avoid this problem, consider getting the unit repaired instead of replacing the gearbox. This can save you a lot of money over a new planetary gearbox.
Proper lubrication is essential for a long life of your planetary gearbox. Oil change frequency should be based on oil temperature and operating speed. Oil at higher temperatures should be changed more frequently because it loses its molecular structure and cannot form a protective film. After this, oil filter maintenance should be performed every few months. Lastly, the gearbox oil needs to be checked regularly and replaced when necessary.

China Standard Best Price of P Series Planetary Gearbox for Concrete Mixer 1400HP Coaxial Windmill Gearbox Planetary Gearbox Reduction 1000nm   with Best Sales China Standard Best Price of P Series Planetary Gearbox for Concrete Mixer 1400HP Coaxial Windmill Gearbox Planetary Gearbox Reduction 1000nm   with Best Sales
editor by CX 2023-10-18

China wholesaler Harmonic Drive Gearbox Reducer Planetary Gearbox wholesaler

Product Description

Product Description:

1. Flexspline is a hollow flanging standard cylinder structure.

2. The structure of the whole item is compact. The input shaft is directly matched with the inner hole of the wave generator. They are connected by a flat key slot.

3. The connecting way is circular spline fixed and flexible output, Or it can also be used that flexible fixed and circular spline output.

Advantages:

1. High precision, high torque

2. Dedicated technical personnel can be on-the-go to provide design solutions

3. Factory direct sales fine workmanship durable quality assurance

4. Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

 

HangZhou CZPT Technology Co., Ltd. established in 2014, is committed to the R & D plant of high-precision transmission components. At present, the annual production capacity can reach 45000 sets of harmonic reducers. We firmly believe in quality first. All links from raw materials to finished products are strictly supervised and controlled, which provides a CZPT foundation for product quality. Our products are sold all over the country and abroad.

The harmonic reducer and other high-precision transmission components were independently developed by the company. Our company spends 20% of its sales every year on the research and development of new technologies in the industry. There are 5 people in R & D.

Our advantage is as below:

1.7 years of marketing experience

2. 5-person R & D team to provide you with technical support

3. It is sold at home and abroad and exported to Turkey and Ireland

4. The product quality is guaranteed with a one-year warranty

5. Products can be customized

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

HCS-I Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

HCG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 ≤20 2000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 ≤20 2000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91

Exhibitions:
Application case:

FQA:
Q: What should I provide when I choose a gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameters. Our engineer will check and recommend the most suitable gearbox model for your reference.
Or you can also provide the below specification as well:
1) Type, model, and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Customization:
Available

|

Customized Request

planetarygearbox

Planetary Gearbox Advantages and Disadvantages

A planetary gearbox is a type of mechanical drive with a single output shaft. They are suitable for both clockwise and counterclockwise rotations, have less inertia, and operate at higher speeds. Here are some advantages and disadvantages of this type of gearbox. Let us see what these advantages are and why you should use them in your applications. Listed below are some of the benefits of planetary gearboxes.

Suitable for counterclockwise and clockwise rotation

If you want to teach children about the clock hands, you can buy some resources for counterclockwise and asymmetrical rotation. These resources include worksheets for identifying degrees of rotation, writing rules for rotation, and visual processing. You can also use these resources to teach angles. For example, the translation of shapes activity pack helps children learn about the rotation of geometric shapes. Similarly, the visual perception activity sheet helps children understand how to process information visually.
Various studies have been done to understand the anatomical substrate of rotations. In a recent study, CZPT et al. compared the position of the transitional zone electrocardiographically and anatomically. The authors found that the transitional zone was normal in nine of 33 subjects, indicating that rotation is not a sign of disease. Similarly, a counterclockwise rotation may be caused by a genetic or environmental factor.
The core tip data should be designed to work in both clockwise and counterclockwise rotation. Counterclockwise rotation requires a different starting point than a clockwise rotation. In North America, star-delta starting is used. In both cases, the figure is rotated about its point. Counterclockwise rotation, on the other hand, is done in the opposite direction. In addition, it is possible to create counterclockwise rotation using the same gimbal.
Despite its name, both clockwise and counterclockwise rotation requires a certain amount of force to rotate. When rotating clockwise, the object faces upwards. Counterclockwise rotation, on the other hand, starts from the top position and heads to the right. If rotating in the opposite direction, the object turns counterclockwise, and vice versa. The clockwise movement, in contrast, is the reverse of counterclockwise rotation.

Has less inertia

The primary difference between a planetary gearbox and a normal pinion-and-gear reducer is the ratio. A planetary gearbox will produce less inertia, which is an important advantage because it will reduce torque and energy requirements. The ratio of the planetary gearbox to its fixed axis counterpart is a factor of three. A planetary gearbox has smaller gears than a conventional planetary, so its inertia is proportional to the number of planets.
Planetary gears are less inertia than spur gears, and they share the load across multiple gear teeth. This means that they will have low backlash, and this is essential for applications with high start-stop cycles and frequent rotational direction changes. Another benefit is the high stiffness. A planetary gearbox will have less backlash than a spur gearbox, which means that it will be more reliable.
A planetary gearbox can use either spur or helical gears. The former provides higher torque ratings while the latter has less noise and stiffness. Both types of gears are useful in motorsports, aerospace, truck transmissions, and power generation units. They require more assembly time than a conventional parallel shaft gear, but the PD series is the more efficient alternative. PD series planetary gears are suitable for many applications, including servo and robotics.
In contrast, a planetary gear set can have varying input speed. This can affect the frequency response of the gearset. A mathematical model of the two-stage planetary gears has non-stationary effects and correlates with experimental findings. Fig. 6.3 shows an addendum. The dedendum’s minimum value is approximately 1.25m. When the dedendum is at its smallest, the dedendum has less inertia.
planetarygearbox

Offers greater reliability

The Planetary Gearbox is a better option for driving a vehicle than a standard spur gearbox. A planetary gearbox is less expensive, and they have better backlash, higher load capacity, and greater shock loads. Unlike spur gearboxes, however, mechanical noise is virtually nonexistent. This makes them more reliable in high-shock situations, as well as in a wide range of applications.
The Economy Series has the same power density and torque capacity of the Precision Helical Series, but it lacks the precision of the latter. In contrast, Economy Series planetary gearboxes feature straight spur planetary gearing, and they are used in applications requiring high torque. Both types of gearboxes are compatible with NEMA servo motors. If torque density is important, a planetary gearbox is the best choice.
The Dispersion of External Load: The SSI model has been extensively used to model the reliability of planetary gear systems. This model takes the contact force and fatigue strength of the system as generalized stress and strength. It also provides a theoretical framework to evaluate the reliability of planetary gear systems. It also has many other advantages that make it the preferred choice for high-stress applications. The Planetary Gearbox offers greater reliability and efficiency than traditional rack and pinion gear systems.
Planetary gearing has greater reliability and compact design. Its compact design allows for wider applications with concerns about space and weight. Additionally, the increased torque and reduction makes planetary gearboxes an excellent choice for a wide variety of applications. There are three major types of planetary gearboxes, each with its own advantages. This article describes a few of them. Once you understand their workings, you will be able to choose the best planetary gearbox for your needs.

Has higher operating speeds

When you look at planetary gearboxes, you might be confused about which one to choose. The primary issue is the application of the gearbox. You must also decide on secondary factors like noise level, corrosion resistance, construction, price, and availability worldwide. Some constructors work faster than others and deliver the gearboxes on the same day. However, the latter ones often deliver the planetary gearbox out of stock.
Compared to conventional gearboxes, a planetary gearbox can run at higher speeds when the input speed fluctuates. However, these gears are not very efficient in high-speed applications because of their increased noise levels. This makes planetary gears unsuitable for applications involving a great deal of noise. That is why most planetary gears are used in small-scale applications. There are some exceptions, but in general, a planetary gearbox is better suited for applications with higher operating speeds.
The basic planetary gearbox is a compact alternative to normal pinion-and-gear reducers. They can be used in a wide variety of applications where space and weight are concerns. Its efficiency is also higher, delivering 97% of the power input. It comes in three different types based on the performance. A planetary gearbox can also be classified as a worm gear, a spur gear, or a sprocket.
A planetary gearhead has a high-precision design and can generate substantial torque for their size. It also reduces backlash to two arc-min. Additionally, it is lubricated for life, which means no maintenance is needed. It can fit into a small machine envelope and has a small footprint. Moreover, the helical crowned gearing provides fast positioning. A sealed gearbox prevents abrasive dust from getting into the planetary gearhead.
planetarygearbox

Has drawbacks

The design of a planetary gearbox is compact and enables high torque and load capability in a small space. This gear arrangement also reduces the possibility of wear and tear. Planet gears are arranged in a planetary fashion, allowing gears to shift under load and a uniform distribution of torque. However, some disadvantages of planetary gears must be considered before investing in this gearbox.
While the planetary gearbox is a high precision motion-control device, its design and maintenance requirements are a concern. The bearing load is high, requiring frequent lubrication. Also, they are inaccessible. Despite these drawbacks, planetary gearboxes are suitable for a variety of tasks. They also have low backlash and high torsional stiffness, making them excellent choices for many applications.
As a result, the speed of a planetary gearbox varies with load and speed. At lower ratios, the sun gear becomes too large in relation to the planet gears. As the ratio increases, the sun gear will become too low, reducing torque. The planetary gears also reduce their torque in high-speed environments. Consequently, the ratio is a crucial consideration for planetary gearbox condition monitoring.
Excess drag may result from out-of-tolerance components or excessive lubrication. Drag should be measured both in directions and be within acceptable ranges. Grease and oil lubrication are two common planetary gearbox lubricants, but the choice is largely dependent on your application. While grease lubricates planetary gears well, oil needs maintenance and re-lubrication every few thousand hours.

China wholesaler Harmonic Drive Gearbox Reducer Planetary Gearbox   wholesaler China wholesaler Harmonic Drive Gearbox Reducer Planetary Gearbox   wholesaler
editor by CX 2023-10-17

China best Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque helical bevel gear

Product Description

       Cycloidal gearbox speed reducer cyclo drive gear motor small planetary gearbox            gear speed planetary reduction stainless steel CHINAMFG epicyclic high torque

Application of Cycloidal gearbox

Cycloidal gearboxes are a type of gear reducer that uses cycloidal gears to transmit power. Cycloidal gears are characterized by their smooth, quiet operation and their ability to handle high torque loads. This makes them ideal for a variety of applications, including:

  • Robotics: Cycloidal gearboxes are often used in robots because they can provide the high torque and low backlash that is required for precise motion control.
  • Machine tools: Cycloidal gearboxes are used in machine tools to provide smooth, quiet operation and to help to extend the life of the machine tools.
  • Aerospace: Cycloidal gearboxes are used in aerospace applications because they are lightweight, durable, and can withstand high temperatures.
  • Wind turbines: Cycloidal gearboxes are used in wind turbines to convert the high-speed rotation of the turbine blades into a lower-speed rotation that can be used to drive a generator.
  • Other applications: Cycloidal gearboxes are also used in a variety of other applications, including food processing, medical equipment, and automotive applications.

Here are some of the advantages of using cycloidal gearboxes:

  • High efficiency: Cycloidal gearboxes are very efficient, typically achieving efficiencies of 95% or more.
  • Low noise: Cycloidal gearboxes operate very quietly, making them ideal for use in applications where noise is a concern.
  • Long life: Cycloidal gears are very durable and can last for many years under normal operating conditions.
  • Compact design: Cycloidal gearboxes are typically smaller and lighter than other types of gear reducers, making them ideal for use in applications where space is limited.

Cycloidal gearboxes are a versatile type of gear reducer that can be used in a variety of applications. They offer a number of advantages over other types of gear reducers, including high efficiency, low noise, long life, and compact design.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

epicyclic gear

Can you explain how an epicyclic gear system handles torque distribution?

An epicyclic gear system, also known as a planetary gear system, is designed to handle torque distribution in an efficient and effective manner. Here’s a detailed explanation:

An epicyclic gear system consists of three main components: the sun gear, planet gears, and the ring gear. Each of these components plays a specific role in torque distribution:

1. Sun Gear:

The sun gear is the central gear in the system and receives torque input. It is typically connected to the power source, such as an engine or motor. The sun gear transfers torque to the other components of the system.

2. Planet Gears:

The planet gears are mounted on a carrier and rotate around the sun gear. They mesh with both the sun gear and the ring gear. The planet gears distribute torque between the sun gear and the ring gear, facilitating power transmission.

3. Ring Gear:

The ring gear is the outermost gear in the system and has internal teeth that engage with the planet gears. It is typically connected to the output shaft and transfers torque to the desired output, such as wheels in a vehicle or a generator in a wind turbine.

Here’s how the torque distribution works in an epicyclic gear system:

1. Torque Input:

The torque input is applied to the sun gear. As the sun gear rotates, it transfers torque to the planet gears.

2. Torque Distribution:

The planet gears receive torque from the sun gear and distribute it between the sun gear and the ring gear. Since the planet gears are meshed with both the sun gear and the ring gear, torque is transmitted from the sun gear to the ring gear through the planet gears.

3. Torque Multiplication or Reduction:

The torque distribution in an epicyclic gear system can be configured to provide either torque multiplication or torque reduction, depending on the arrangement of the gears. For example, if the sun gear is held stationary, the planet gears can rotate around the sun gear, causing the ring gear to rotate at a higher speed with increased torque. This configuration provides torque multiplication. Conversely, if the ring gear is held stationary, the sun gear can rotate, causing the planet gears to rotate in the opposite direction, resulting in torque reduction.

4. Even Torque Distribution:

An advantage of using an epicyclic gear system is that it facilitates even torque distribution among the planet gears. The multiple planet gears share the load, which helps distribute torque evenly across the gear system. This even torque distribution minimizes stress concentration on individual gear teeth, reducing wear and improving overall durability and reliability.

In summary, an epicyclic gear system handles torque distribution by transferring torque from the sun gear to the planet gears, which then distribute it between the sun gear and the ring gear. This configuration allows for torque multiplication or reduction and ensures even torque distribution among the planet gears, resulting in efficient power transmission and reliable operation.

epicyclic gear

What is the purpose of using epicyclic gears in robotics and automation?

Epicyclic gears, also known as planetary gears, serve several purposes in robotics and automation. Here’s a detailed explanation:

1. Compact Size:

Epicyclic gears offer a compact and space-efficient solution for transmitting torque and achieving different speed ratios. The arrangement of multiple gears within a single gear system allows for a high gear reduction or speed increase in a relatively small package. This compact size is particularly advantageous in robotics and automation applications where space is limited.

2. High Torque Transmission:

Epicyclic gears are capable of transmitting high torque levels due to their design. The load is distributed among multiple planet gears, allowing for a higher torque capacity compared to other gear types. This high torque transmission capability makes epicyclic gears suitable for applications that require precise and powerful motion control, such as robot joints and industrial automation systems.

3. Speed Control:

The arrangement of gears in an epicyclic gear system allows for precise control over speed ratios. By manipulating the input and output gears, different gear ratios can be achieved, enabling speed control and gear reduction or amplification. This speed control capability is essential in robotics and automation to achieve desired motion profiles and optimize system performance.

4. Backlash Minimization:

Epicyclic gears can be designed to minimize backlash, which is the angular clearance between gear teeth when there is no load applied. Backlash can introduce inaccuracies and delays in robotic and automation systems. By carefully designing gear tooth profiles and controlling gear meshing, epicyclic gears can reduce backlash, improving precision and responsiveness in motion control applications.

5. Efficiency and Durability:

Epicyclic gears can achieve high efficiency levels due to their rolling contact between gear teeth. This rolling contact results in less friction and energy loss compared to sliding contact gears. Additionally, the load distribution among multiple gear teeth reduces the stress on individual teeth, enhancing durability and prolonging the gear system’s lifespan.

6. Modular Design:

Epicyclic gears offer a modular design that allows for easy integration into robotic and automation systems. They can be combined with other mechanical components, such as motors and actuators, to create compact and efficient power transmission systems. The modular nature of epicyclic gears simplifies system design, assembly, and maintenance.

7. Reduction of Motor Torque Ripple:

In certain robotic applications, particularly those requiring smooth and precise motion, epicyclic gears can be utilized to reduce motor torque ripple. By incorporating epicyclic gears with appropriate gear ratios, the torque ripple generated by the motor can be smoothed out, resulting in smoother and more uniform motion.

In summary, the purpose of using epicyclic gears in robotics and automation is to provide a compact size, high torque transmission, speed control, backlash minimization, efficiency and durability, modular design, and reduction of motor torque ripple. These advantages make epicyclic gears a valuable choice for achieving precise motion control, optimizing system performance, and enhancing the overall efficiency and reliability of robotic and automation systems.

epicyclic gear

What is the role of a sun gear, planet gears, and ring gear in an epicyclic arrangement?

In an epicyclic gear arrangement, the sun gear, planet gears, and ring gear each have specific roles and functions. Here’s a detailed explanation:

1. Sun Gear:

The sun gear is the central gear component in an epicyclic arrangement. Its primary role is to provide the input rotational motion or power to the gear system. The sun gear is typically located at the center and is surrounded by the planet gears. It engages with the planet gears through meshing teeth, transmitting rotational force to them.

2. Planet Gears:

The planet gears are multiple gears that revolve around the sun gear in an epicyclic arrangement. They are mounted on a carrier, which holds and supports the planet gears. The planet gears mesh with both the sun gear and the ring gear. As the sun gear rotates, it causes the planet gears to rotate around their own axes while simultaneously orbiting around the sun gear. The planet gears transmit the rotational motion and torque from the sun gear to the ring gear.

3. Ring Gear:

The ring gear, also known as the annular gear or the outer gear, is the outermost gear component in an epicyclic arrangement. It has internal teeth that mesh with the planet gears. The ring gear provides the outer boundary of the gear system and engages with the planet gears, transferring the rotational motion and torque from the planet gears to the output or the next stage of the gear system. In some arrangements, the ring gear is fixed or held stationary, while in others, it can rotate.

The combination and interaction of the sun gear, planet gears, and ring gear in an epicyclic arrangement enable various gear functions, such as gear reduction, torque multiplication, speed control, and directional changes. The arrangement and engagement of these gears determine the gear ratios and overall performance of the gear system.

China best Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque helical bevel gearChina best Cycloidal Gearbox Speed Reducer Cyclo Drive Gear Motor Small Planetary Gearbox Gear Speed Planetary Reduction Stainless Steel CZPT Epicyclic High Torque helical bevel gear
editor by CX 2023-10-08

China Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gear

Product Description

Product Description

Product Parameters

Item Spur Gear Axle Shaft
Material 4140,4340,40Cr,42Crmo,42Crmo4,20Cr,20CrMnti, 20Crmo,35Crmo
OEM NO Customize
Certification ISO/TS16949
Test Requirement Magnetic Powder Test, Hardness Test, Dimension Test
Color Paint , Natural Finish ,Machining All Around
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Steel Alloy,etc.
Stainess Steel: 303/304/316,etc.
Copper/Brass/Bronze/Red Copper,etc.
Plastic:ABS,PP,PC,Nylon,Delrin(POM),Bakelite,etc.
Size According to Customer’s drawing or samples
Process CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Cutting,etc.
Tolerance ≥+/-0.03mm
Surface Treatment (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Painting,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Available
Packing Spline protect cover ,Wood box ,Waterproof membrane; Or per customers’ requirements.

 

Our Advantages

Why Choose US ???

1. Equipment :

Our company boasts all necessary production equipment,
including Hydraulic press machines, Japanese CNC lathe (TAKISAWA), Korean gear hobbing machine (I SNT), gear shaping machine, machining center, CNC grinder, heat treatment line etc.

2. Processing precision:

We are a professional gear & gear shafts manufacturer. Our gears are around 6-7 grade in mass production.

3. Company:

We have 90 employees, including 10 technical staffs. Covering an area of 20000 square meters.

4. Certification :

Oue company has passed ISO 14001 and TS16949

5.Sample service :

We provide free sample for confirmation and customer bears the freight charges

6.OEM service :

Having our own factory and professional technicians,we welcome OEM orders as well.We can design and produce the specific product you need according to your detail information

 

Cooperation Partner

Company Profile

Our Featured Products

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear
Yield: 5, 000PCS / Month
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicyclic gear

What are the benefits of using epicyclic gears in wind turbines?

Epicyclic gears, also known as planetary gears, offer several benefits when used in wind turbines. Here’s a detailed explanation:

1. Compact and Lightweight Design:

Epicyclic gears provide a compact and lightweight design for wind turbines. This is particularly advantageous in the nacelle, where space and weight constraints are critical. The compactness of epicyclic gears allows for more efficient use of available space and reduces the overall weight of the turbine, which simplifies transportation, installation, and maintenance processes.

2. High Power Density:

Epicyclic gears offer high power density, which means they can handle a significant amount of power transmission in a relatively small volume. This is particularly beneficial in wind turbines, where the generation of large amounts of power is required. The high power density of epicyclic gears allows for the efficient transfer of power from the rotor to the generator.

3. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of premature wear or failure. In wind turbines, where the loads can be substantial, epicyclic gears contribute to improved durability and reliability.

4. Variable Speed Operation:

Epicyclic gears facilitate variable speed operation in wind turbines. By adjusting the gear ratio, the rotational speed of the generator can be optimized to match the varying wind conditions. This allows the turbine to operate at its peak efficiency, maximizing power generation and improving overall energy conversion.

5. Torque Limiting and Overload Protection:

The design of epicyclic gears allows for torque limiting and overload protection in wind turbines. By incorporating torque limiters or automatic shutdown mechanisms, excessive loads or sudden gusts of wind can be mitigated. This protects the gearbox and other components from damage and extends their operational lifespan.

6. Redundancy and Fault Tolerance:

Epicyclic gears can be configured in redundant arrangements, providing fault tolerance in wind turbines. By using multiple sets of gears, if one gear set fails, the remaining gears can continue to operate, ensuring the functionality of the turbine. This redundancy enhances the reliability and availability of the wind turbine, reducing downtime and maintenance costs.

Overall, the benefits of using epicyclic gears in wind turbines include compactness, high power density, load distribution, variable speed operation, torque limiting, and fault tolerance. These advantages contribute to the efficient and reliable operation of wind turbines, promoting renewable energy generation.

epicyclic gear

How do epicyclic gears offer compact solutions in space-constrained applications?

Epicyclic gears, also known as planetary gears, provide compact solutions in space-constrained applications. Here’s a detailed explanation:

1. Concentric Design:

Epicyclic gears have a concentric design where multiple gears are arranged around a central sun gear. This concentric arrangement allows for the transmission of torque and motion within a compact space. The gears share a common center, resulting in a smaller overall footprint compared to other gear systems.

2. Multiple Gear Stages:

Epicyclic gears can achieve multiple gear stages within a single gear system. By stacking planet gears and incorporating additional ring gears, the gear reduction or speed increase can be multiplied, all within a compact assembly. This eliminates the need for multiple separate gear systems, saving space and simplifying the mechanical layout.

3. High Gear Reduction:

Epicyclic gears offer high gear reduction capabilities. The arrangement of multiple planet gears allows for a high reduction ratio within a single stage of gears. This high gear reduction enables compact power transmission systems and is particularly useful in applications where space is limited, such as small robots or micro-actuators.

4. Inline Input and Output:

Epicyclic gears have an inline input and output configuration, where the input and output shafts are aligned on the same axis. This inline arrangement contributes to a more compact design, as it eliminates the need for additional space to redirect the motion or torque between non-aligned shafts.

5. Integration with Other Components:

Epicyclic gears can be easily integrated with other mechanical components, such as motors or actuators, within a compact space. The modular design of epicyclic gears allows for seamless integration, enabling the creation of more compact and efficient power transmission systems.

6. Customizable Gear Ratios:

Epicyclic gears offer flexibility in achieving customizable gear ratios. By varying the number of teeth on the gears or using different combinations of gears, specific gear ratios can be obtained to meet the requirements of the application. This customization capability allows for optimized space utilization and efficient power transmission.

7. Reduction of External Support Components:

Epicyclic gears can reduce the need for additional support components, such as idler gears or external shafts, which are often required in other gear systems. By incorporating multiple gears within a single assembly, epicyclic gears can achieve the desired motion and torque transfer without relying on external supporting structures, resulting in a more compact overall system.

In summary, epicyclic gears offer compact solutions in space-constrained applications through their concentric design, multiple gear stages, high gear reduction capabilities, inline input and output configuration, integration with other components, customizable gear ratios, and reduction of external support components. These features make epicyclic gears a preferred choice for achieving compact and efficient power transmission in various applications where space is limited.

“`epicyclic gear

How do epicyclic gears contribute to power transmission in machinery?

Epicyclic gears, also known as planetary gears, play a crucial role in power transmission within machinery. Here’s a detailed explanation of their contribution:

1. Gear Reduction:

Epicyclic gears allow for significant gear reduction, which is the process of reducing the rotational speed of the output shaft compared to the input shaft. By configuring the gear engagement and gear ratios, epicyclic gears can achieve high reduction ratios, enabling machinery to operate at lower speeds while maintaining high torque output.

2. Torque Multiplication:

Epicyclic gears also provide torque multiplication, which is the process of increasing the torque output compared to the torque applied at the input. By utilizing the gear ratios and gear arrangement, epicyclic gears can effectively multiply the torque, allowing machinery to generate higher rotational force for heavy-duty applications.

3. Compactness:

Epicyclic gears offer a compact design, making them ideal for applications where space is limited. The arrangement of the sun gear, planet gears, and annular gear allows for a high gear reduction or multiplication within a small footprint. This compactness is particularly advantageous in industries such as automotive, aerospace, and robotics, where efficient power transmission is required in confined spaces.

4. Versatile Gear Ratios:

Epicyclic gears provide a wide range of gear ratios, which allows machinery to adapt to different operational requirements. By selecting the appropriate combination of gear engagement and gear ratios, the speed and torque characteristics of the machinery can be tailored to specific applications. This versatility in gear ratios enhances the flexibility and performance of machinery across various industries.

5. Precise Control:

Epicyclic gears enable precise control over power transmission within machinery. The combination of rotational and orbital motion in planetary gear sets allows for smooth and precise adjustments of speed and torque. This level of control is crucial in applications that require accurate positioning, speed regulation, and responsive power transfer.

6. Multiple Functions:

Epicyclic gears offer various functions beyond power transmission. They can be utilized for directional changes, torque splitting, braking, and speed synchronization. These additional functions enhance the versatility and efficiency of machinery, allowing for complex operations and improved overall performance.

Overall, epicyclic gears contribute to power transmission in machinery by providing gear reduction, torque multiplication, compactness, versatile gear ratios, precise control, and multiple functions. Their unique design and capabilities make them a valuable component in a wide range of industries and applications.

China Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gearChina Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gear
editor by CX 2023-10-07

China Professional Drive Spur Transmission Sun Planetary Epicyclic Gear with Good quality

Product Description

Product Description

Product Parameters

Item Spur Gear Axle Shaft
Material 4140,4340,40Cr,42Crmo,42Crmo4,20Cr,20CrMnti, 20Crmo,35Crmo
OEM NO Customize
Certification ISO/TS16949
Test Requirement Magnetic Powder Test, Hardness Test, Dimension Test
Color Paint , Natural Finish ,Machining All Around
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Steel Alloy,etc.
Stainess Steel: 303/304/316,etc.
Copper/Brass/Bronze/Red Copper,etc.
Plastic:ABS,PP,PC,Nylon,Delrin(POM),Bakelite,etc.
Size According to Customer’s drawing or samples
Process CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Cutting,etc.
Tolerance ≥+/-0.03mm
Surface Treatment (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Painting,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Available
Packing Spline protect cover ,Wood box ,Waterproof membrane; Or per customers’ requirements.

 

Our Advantages

Why Choose US ???

1. Equipment :

Our company boasts all necessary production equipment,
including Hydraulic press machines, Japanese CNC lathe (TAKISAWA), Korean gear hobbing machine (I SNT), gear shaping machine, machining center, CNC grinder, heat treatment line etc.

2. Processing precision:

We are a professional gear & gear shafts manufacturer. Our gears are around 6-7 grade in mass production.

3. Company:

We have 90 employees, including 10 technical staffs. Covering an area of 20000 square meters.

4. Certification :

Oue company has passed ISO 14001 and TS16949

5.Sample service :

We provide free sample for confirmation and customer bears the freight charges

6.OEM service :

Having our own factory and professional technicians,we welcome OEM orders as well.We can design and produce the specific product you need according to your detail information

 

Cooperation Partner

Company Profile

Our Featured Products

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear
Yield: 5, 000PCS / Month
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicyclic gear

What are the benefits of using epicyclic gears in wind turbines?

Epicyclic gears, also known as planetary gears, offer several benefits when used in wind turbines. Here’s a detailed explanation:

1. Compact and Lightweight Design:

Epicyclic gears provide a compact and lightweight design for wind turbines. This is particularly advantageous in the nacelle, where space and weight constraints are critical. The compactness of epicyclic gears allows for more efficient use of available space and reduces the overall weight of the turbine, which simplifies transportation, installation, and maintenance processes.

2. High Power Density:

Epicyclic gears offer high power density, which means they can handle a significant amount of power transmission in a relatively small volume. This is particularly beneficial in wind turbines, where the generation of large amounts of power is required. The high power density of epicyclic gears allows for the efficient transfer of power from the rotor to the generator.

3. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of premature wear or failure. In wind turbines, where the loads can be substantial, epicyclic gears contribute to improved durability and reliability.

4. Variable Speed Operation:

Epicyclic gears facilitate variable speed operation in wind turbines. By adjusting the gear ratio, the rotational speed of the generator can be optimized to match the varying wind conditions. This allows the turbine to operate at its peak efficiency, maximizing power generation and improving overall energy conversion.

5. Torque Limiting and Overload Protection:

The design of epicyclic gears allows for torque limiting and overload protection in wind turbines. By incorporating torque limiters or automatic shutdown mechanisms, excessive loads or sudden gusts of wind can be mitigated. This protects the gearbox and other components from damage and extends their operational lifespan.

6. Redundancy and Fault Tolerance:

Epicyclic gears can be configured in redundant arrangements, providing fault tolerance in wind turbines. By using multiple sets of gears, if one gear set fails, the remaining gears can continue to operate, ensuring the functionality of the turbine. This redundancy enhances the reliability and availability of the wind turbine, reducing downtime and maintenance costs.

Overall, the benefits of using epicyclic gears in wind turbines include compactness, high power density, load distribution, variable speed operation, torque limiting, and fault tolerance. These advantages contribute to the efficient and reliable operation of wind turbines, promoting renewable energy generation.

epicyclic gear

Can you explain the function of an epicyclic gear system in a helicopter’s rotor?

An epicyclic gear system, also known as a planetary gear system, plays a crucial function in a helicopter’s rotor. Here’s a detailed explanation:

1. Power Transmission:

The primary function of the epicyclic gear system in a helicopter’s rotor is to transmit power from the engine to the rotor blades. The system acts as a mechanical interface between the engine and the rotor, transferring torque and rotational motion effectively.

2. Gear Reduction:

The epicyclic gear system allows for gear reduction, which is essential in a helicopter rotor system. The high-speed rotation of the engine is converted into a lower rotational speed but increased torque at the rotor. This gear reduction enables the rotor blades to achieve the necessary lift and control, even with the high rotational speed of the engine.

3. Speed Control:

The epicyclic gear system provides speed control capabilities for the helicopter’s rotor. By adjusting the gear ratios within the system, the rotational speed of the rotor blades can be controlled. This speed control is vital for various flight maneuvers, such as takeoff, landing, hovering, and forward flight.

4. Torque Distribution:

An important function of the epicyclic gear system is to distribute torque evenly among the rotor blades. The system ensures that the torque generated by the engine is evenly distributed across all the blades, resulting in balanced lift and stable flight characteristics.

5. Autorotation:

The epicyclic gear system also enables autorotation, which is a critical safety feature in helicopters. During an engine failure, the system allows the rotor blades to continue rotating solely due to the upward airflow. This autorotation provides a controlled descent and allows the pilot to maintain some level of control over the helicopter’s flight path during an emergency.

6. Feathering:

Feathering refers to the ability to adjust the pitch angle of the rotor blades collectively. The epicyclic gear system incorporates mechanisms that enable feathering, allowing the pilot to change the pitch angle of all the blades simultaneously. This adjustment is used to optimize the helicopter’s performance in different flight conditions, such as reducing drag or increasing lift.

7. Mechanical Isolation:

The epicyclic gear system provides mechanical isolation between the engine and the rotor blades. This isolation helps dampen vibrations and reduces the transmission of engine-induced vibrations to the rotor system. It contributes to smoother operation, improved comfort, and reduced stress on the overall helicopter structure.

In summary, the function of an epicyclic gear system in a helicopter’s rotor includes power transmission, gear reduction, speed control, torque distribution, autorotation capability, feathering control, and mechanical isolation. These functions are critical for achieving efficient and safe helicopter operations, enabling lift generation, flight control, and maneuverability.

epicyclic gear

What is an epicyclic gear and how does it function?

An epicyclic gear, also known as a planetary gear, is a gear system that consists of one or more outer gears, an inner gear, and a central gear, known as a sun gear. Here’s a detailed explanation of how it functions:

1. Gear Arrangement:

In an epicyclic gear system, the sun gear is located at the center and is surrounded by multiple outer gears, also called planet gears. The planet gears are typically mounted on a carrier, which allows them to rotate around the central sun gear.

2. Gear Engagement:

The teeth of the planet gears mesh with both the sun gear and an outer ring gear, also known as the annular gear. The annular gear has internal teeth that engage with the planet gears and external teeth that provide the outer boundary of the gear system.

3. Input and Output:

The input and output connections can be achieved in different ways depending on the design. Typically, the sun gear serves as the input shaft, while the carrier or the annular gear acts as the output shaft. The rotation of the input shaft (sun gear) causes the planet gears to orbit around it and rotate, resulting in the output shaft’s motion.

4. Gear Ratios:

An essential feature of epicyclic gears is their ability to provide different gear ratios by changing the arrangement of the gears. By holding one component stationary, such as fixing the annular gear or the carrier, and driving another component, the gear system can achieve various speed and torque combinations.

5. Gear Functions:

Epicyclic gears have several useful functions in mechanical systems, including:

  • Speed reduction: By fixing the sun gear and rotating the carrier or the annular gear, the output speed can be reduced compared to the input speed.
  • Speed increase: By fixing the carrier or the annular gear and rotating the sun gear, the output speed can be increased compared to the input speed.
  • Directional changes: Changing the gear engagement arrangement allows reversing the direction of rotation between the input and output shafts.
  • Torque multiplication: By utilizing the gear ratios, an epicyclic gear system can multiply or divide the torque between the input and output shafts, providing mechanical advantage.
  • Braking: By holding specific components, such as the sun gear or the carrier, the gear system can act as a brake, preventing rotation or controlling the speed of the output shaft.

Epicyclic gears find applications in various mechanical systems, including automotive transmissions, gearboxes, power tools, and robotics, due to their compact size, versatility, and ability to achieve multiple gear ratios within a single gear system.

China Professional Drive Spur Transmission Sun Planetary Epicyclic Gear with Good qualityChina Professional Drive Spur Transmission Sun Planetary Epicyclic Gear with Good quality
editor by CX 2023-09-28

China OEM HD469-2403016 4110001187053 Plant Gear for CZPT Lgmg Mt86 Mt86h Mt95 Mt96L Tonly 875 875b 883 885 supplier

Product Description

Product Description

HD
411 Pass-axle box cap 1 93 81.90685.0303 Flange nut 2 94 HD Passive column gear 1 95 06.32499.0571 Row-steep roller bearing 2 96 06.32499. Row-steep roller bearing 2 99 HD Active taper gear 1 1 Active taper gear 1 101 HD Active taper gear 1 102 HD Roller bearing 1 103 HD Stop ring 1 104 Q1811645TF2 Hex bolt 8 105 HD Bearing block 1 106 HD Adjusting washer as needed 107 Q5211228 Pin 2 108 DZ90149326 Differential case (right) 1 113 HD469-24571 Differential case (right) 1 114 HD Axle shaft gear washer 2 115 HD Axle shaft gear 1 116 HD Axle shaft gear 1 117 Q180571 Hex bolt 2 118 DZ911232571 Locking piece 2 119 DZ90149326 spherical surface Washer 4 122 HD Plant gear 4 123 HD Plant gear 4 124 Q522571 Pin 4 125 HD469-24 0571 1 Cross axle 1 126 HD Cross axle 2 127 DZ90149326 Passive taper gear 1 129 HD Passive taper gear 1 130 HD Passive taper gear 1 131 HD Differential case (left) 1 132 HD469-25571 Differential case (left) 1 133 DZ90149326 Flange 1 135 HD Adjusting nut 1 136 DZ9112320920 Axle seal ring 1 137 DZ95149326 Axle shaft gear 1 145 HD469-251 Adjusting shim 1 147 HD469-251 Cross axle 1 149 HD469-251 Differential case of axle 1 151 HD Active column gear 1 152 HD bush 1 153 HD Sliding engage cowl 1 154 HD Stop shim 1 155 HD Perforation shaft(input) 1 156 HD Locking piece 1 157 Q180571TF2 Hex bolt 1 158 Q218B571 bolt 3 159 81.25503.5714 Gearbox switch 1 160 19 Cylinder cover 1 162 HD Gasket 1 163 HD bush 1 164 HD Plunger 1 165 HD O-ring 1 166 HD Washer as needed 167 HD Washer as needed 168 HD Selector fork 1 169 HD Spring 1 170 81.90685.571 Flange nut 1 171 81.39115.0426 Flange 1 172 81.39135.2019 Dirt guard 1 173 DZ9112320920 Axle seal ring 1 174 DZ9112325715 Grease packing seat 1 175 06.32499.0571 Row-steep roller bearing 1 176 06.32499. Bearing block 1 179 HD O-ring 1 180 81.9 0571 .5710 Adjusting washer 1 181 HD469-24571 Active taper gear 1 183 HD Active taper gear 1 184 HD Active taper gear 1 185 HD Roller bearing 1 186 HD Stop ring 1 187 HD Adjusting washer as needed 188 HD Adjusting washer as needed 189 HD Adjusting washer as needed 190 HD Adjusting washer as needed 191 HD Adjusting washer as needed 192 HD Adjusting washer as needed 193 DZ90149326 Axle shaft gear washer 2 202 HD Axle shaft gear 2 203 HD Axle shaft gear 2 204 Q180571 Hex bolt 2 205 DZ911232571 Locking piece 2 206 Q151C20110TF2 bolt 4 207 DZ90149326 spherical surface Washer 4 210 HD Plant gear 4 211 HD Plant gear 4 212 HD Cross axle 2 213 HD469-24 0571 1 Cross axle 1 214 DZ90149326 Active taper gear 1 216 HD Active taper gear 1 217 HD Active taper gear 1 218 HD Differential case (right) 1 219 HD469-24571 Differential case (right) 1 220 DZ90149336002 Middle axle housing assembly 1 221 81.90801.5711 Anti-loose piece 1 222 Q41408 washer 1 223 Q150B571TF2 Hex bolt 1 224 199000330006 Vent assembly 1 225 Q5211228 Pin 2 226 81.90301.0571 Plug 1 227 Q1211655TF2 Stud 10 228 DZ905710000 Locking nut 12 229 DZ90149336003 Rear axle housing assembly 1 230 199000330006 Vent assembly 1 231 DZ905710000 Locking nut 12 232 Q1211645TF2 Stud 6 233 Q5211228 Pin 2 234 Q12116455TF2 Stud 6 235 81.90301.0571 Plug 1 236 DZ9112346116 Plug 4 237 190003098026 Packing ring 4 238 Q184A1018TF2 Hex bolt 20 239 DZ9112342013 End cap 2 240 Q2541030 Bolt 12 241 DZ90149346571 Brake drum 2 242 DZ90149346008 Hex bolt 2 243 DZ90149346005 Hub redactor case 2 244 DZ9112342041 Stopping washer 20 245 DZ9112342571 Stopping washer 4 246 Q43155 Circlip for shaft 2 247 DZ90149346045 Stopping washer 2 248 DZ90149346013 Central gear 2 249 DZ90149346012 Planet gear 10 250 Q43365 Wire circlip for shaft 2 251 DZ90149346011 Planet gear axle 10 252 DZ90149346009 Quill roller bearing assembly 10 253 164 ´ 4DIN472 Circlip for hole 2 254 DZ9112342030 Adjuster washer as needed 255 DZ9112342031 Adjuster washer as needed 256 DZ9112342032 Adjuster washer as needed 257 DZ9112342033 Adjuster washer as needed 258 DZ9112342034 Adjuster washer as needed 259 DZ90149346019 Inside gear ring 2 260 DZ90149346018 Gear ring bearer 2 261 DZ9112342091 Circlip for hole 2 262 32226 Row-steep roller bearing 2 263 DZ9112342061 O style packing ring 4 264 DZ9112342055 Wheel nut 24 265 DZ90149346571 Wheel hub 2 266 DZ9112342071 Wheel bolt 24 267 DZ9112342062 Circlip for shaft 2 268 32224 Row-steep roller bearing 2 269 DZ90149346571 Hub Packing ring 2 270 DZ9112342052 Oil baffle disc 2 271 DZ90149346026 Space ring 2 272 DZ9112440508 Washer 2 273 DZ911244571 O style packing ring 2 274 DZ90001500004 Hex bolt 36 275 DZ90149346571 Brake assembly 2 276 DZ90149346004 Bolt 2 277 DZ90149346016 Locking nut 2 278 DZ90149346015 Stopping ring 2 279 DZ90149346014 Locking nut 2 280 DZ90149346571 Axle shaft 2 281 DZ90149346033   Brake cam shaft(right 1 282 DZ90149346034 Brake cam shaft(right) 1 283 DZ90149346035 Brake cam shaft(right 1 284 DZ90149346036 Brake cam shaft(right 1 285 Q43142 Circlip for shaft 2 286 Q150B08205 Hex bolt 8 287 Q40308 Spring washer 8 288 DZ90149346063 Outside bearer 2 289 DZ9112340093 Packing ring 4 290 SXQ70006 Grease nipple 2 291 DZ9112340095 Ball bearing 2 292 DZ9014934606 Inside bearer 2 293 Q151B1645TF2 Hex bolt 8 294 DZ90149346037   Chamber bearer (right) 1 295 DZ90149346038 Chamber bearer (right) 1 296 DZ90149346039 Chamber bearer (right) 1 297 DZ90149346040 Chamber bearer (right) 1 298 DZ90149346040 Chamber bearer (right) 1 299 DZ90149346042  Adjuster washer Adjuster washer as needed 300 DZ90149346043 Adjuster washer Adjuster washer as needed 301 DZ90149346044 Adjuster washer as needed 302 DZ90149346041 Gap adjuster arm assembly 2 303 188000340571 Washer 2 304 10800032571 Adjuster washer Adjuster washer Adjuster washer as needed 305 10800032571 Adjuster washer as needed 306 108000320030 Adjuster washer as neede 307 108000320046 Adjuster washer as neede 308 Circlip for axle 2 309 Pin 2 310 Washer 2 311 DZ911436 0571 Brake chamber 2 312 190003903661 Pin 2 313 DZ9112440521 Choke plug 2 314 Q150B1016 Hex bolt 6 315 Q4571 Spring washer 6 316 DZ90149346030 Dirt guard 1 317 DZ911244 0571 Bush 1 318 Taper thread grease nipple 1 319 DZ9112440524 Return spring 1 320 DZ9112440525 Return spring pin 2 321 DZ9112440526 Support spring 2 322 DZ911244 0571 Holddown wheel 2 323 DZ90149346031 Brake shoe 2 324 DZ9112440529 Clinch 80 325 DZ90149346032 Brake camshaft 4 326 DZ911244571 Down return spring 2 327 DZ911244571 Pin axle 1 328 DZ911244571 Bullet axle 1 329 DZ90149346571 Brake camshaft 1

FAQ

 

  • 1. How long have you been in this business?
    We have 17 years of industry experience. Mine truck parts only!
     

  • 2.Do you have enough products?
    10000 kinds of varieties. ONE STOP SHOPPING of mining Truck Parts.
     

  • 3.Can you be trusted?
    Our long-term good cooperation with 100+ customers around the world is the best proof.
     

  • 4.Can there be an account period?
    O/A 90 DAYS
     

  • 5.Are you a factory or a trading company?
    trading company. we have 2000+Factory perfect supply chain. Strictly check quality and control risk for you.
     

  • 6.How long will the delivery?
    Within a week.

  • 7.Is there a discount for new customers?
    New customers get up to 10% off their first order.

 

After-sales Service: on-Line Service
Condition: New
Axle Number: 3
Application: Truck
Certification: DIN, ISO
Material: Steel
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicyclic gear

How do epicyclic gears contribute to gear reduction and speed increase?

Epicyclic gears, also known as planetary gears, play a significant role in achieving gear reduction and speed increase in various mechanical systems. Here’s a detailed explanation:

1. Gear Reduction:

Epicyclic gears can achieve gear reduction by utilizing their unique gear arrangement. The gear reduction is achieved by fixing or holding certain components of the gear system, such as the ring gear or the planet carrier, while the input and output shafts rotate. This causes the sun gear to drive the planet gears, resulting in a reduction of output speed and an increase in torque. The gear ratio formula for gear reduction in an epicyclic gear system is R = (1 + S) / (1 + R), where R is the number of teeth on the ring gear and S is the number of teeth on the sun gear.

2. Speed Increase:

Epicyclic gears can also be used to achieve speed increase when certain components of the gear system are held fixed or driven while the output shaft rotates. In this configuration, the input torque is divided among multiple planet gears, which rotate around the sun gear and drive the output shaft. This results in an increase in output speed and a decrease in torque. The gear ratio formula for speed increase in an epicyclic gear system is R = (1 + R) / (1 + S), where R is the number of teeth on the ring gear and S is the number of teeth on the sun gear.

3. Multiple Stages:

Epicyclic gears can achieve higher gear reduction or speed increase by incorporating multiple stages within a single gear system. Each stage consists of a set of gears, including a sun gear, planet gears, and a ring gear. The output of one stage becomes the input for the next stage, allowing for a cumulative effect on the gear ratio. By stacking multiple stages, the overall gear reduction or speed increase can be multiplied, providing a wide range of gear ratios to suit different application requirements.

4. Customizable Gear Ratios:

Epicyclic gears offer flexibility in achieving customizable gear ratios. By varying the number of teeth on the gears or using different combinations of gears, specific gear ratios can be obtained to meet the needs of the application. This customization capability allows for optimized speed control, gear reduction, and torque multiplication, making epicyclic gears versatile in a wide range of mechanical systems.

5. Compact Design:

Epicyclic gears contribute to gear reduction and speed increase while maintaining a compact design. The concentric arrangement of gears and the ability to achieve multiple gear stages within a single gear system result in a smaller overall footprint compared to other gear arrangements. This compact design is particularly useful in space-constrained applications where achieving high gear reduction or speed increase is essential.

In summary, epicyclic gears contribute to gear reduction and speed increase through their unique gear arrangement, multiple stages, customizable gear ratios, and compact design. These features make them widely used in various mechanical systems, such as automotive transmissions, industrial machinery, and robotics, where efficient power transmission and speed control are crucial.

epicyclic gear

How do epicyclic gears offer compact solutions in space-constrained applications?

Epicyclic gears, also known as planetary gears, provide compact solutions in space-constrained applications. Here’s a detailed explanation:

1. Concentric Design:

Epicyclic gears have a concentric design where multiple gears are arranged around a central sun gear. This concentric arrangement allows for the transmission of torque and motion within a compact space. The gears share a common center, resulting in a smaller overall footprint compared to other gear systems.

2. Multiple Gear Stages:

Epicyclic gears can achieve multiple gear stages within a single gear system. By stacking planet gears and incorporating additional ring gears, the gear reduction or speed increase can be multiplied, all within a compact assembly. This eliminates the need for multiple separate gear systems, saving space and simplifying the mechanical layout.

3. High Gear Reduction:

Epicyclic gears offer high gear reduction capabilities. The arrangement of multiple planet gears allows for a high reduction ratio within a single stage of gears. This high gear reduction enables compact power transmission systems and is particularly useful in applications where space is limited, such as small robots or micro-actuators.

4. Inline Input and Output:

Epicyclic gears have an inline input and output configuration, where the input and output shafts are aligned on the same axis. This inline arrangement contributes to a more compact design, as it eliminates the need for additional space to redirect the motion or torque between non-aligned shafts.

5. Integration with Other Components:

Epicyclic gears can be easily integrated with other mechanical components, such as motors or actuators, within a compact space. The modular design of epicyclic gears allows for seamless integration, enabling the creation of more compact and efficient power transmission systems.

6. Customizable Gear Ratios:

Epicyclic gears offer flexibility in achieving customizable gear ratios. By varying the number of teeth on the gears or using different combinations of gears, specific gear ratios can be obtained to meet the requirements of the application. This customization capability allows for optimized space utilization and efficient power transmission.

7. Reduction of External Support Components:

Epicyclic gears can reduce the need for additional support components, such as idler gears or external shafts, which are often required in other gear systems. By incorporating multiple gears within a single assembly, epicyclic gears can achieve the desired motion and torque transfer without relying on external supporting structures, resulting in a more compact overall system.

In summary, epicyclic gears offer compact solutions in space-constrained applications through their concentric design, multiple gear stages, high gear reduction capabilities, inline input and output configuration, integration with other components, customizable gear ratios, and reduction of external support components. These features make epicyclic gears a preferred choice for achieving compact and efficient power transmission in various applications where space is limited.

“`epicyclic gear

How do epicyclic gears contribute to power transmission in machinery?

Epicyclic gears, also known as planetary gears, play a crucial role in power transmission within machinery. Here’s a detailed explanation of their contribution:

1. Gear Reduction:

Epicyclic gears allow for significant gear reduction, which is the process of reducing the rotational speed of the output shaft compared to the input shaft. By configuring the gear engagement and gear ratios, epicyclic gears can achieve high reduction ratios, enabling machinery to operate at lower speeds while maintaining high torque output.

2. Torque Multiplication:

Epicyclic gears also provide torque multiplication, which is the process of increasing the torque output compared to the torque applied at the input. By utilizing the gear ratios and gear arrangement, epicyclic gears can effectively multiply the torque, allowing machinery to generate higher rotational force for heavy-duty applications.

3. Compactness:

Epicyclic gears offer a compact design, making them ideal for applications where space is limited. The arrangement of the sun gear, planet gears, and annular gear allows for a high gear reduction or multiplication within a small footprint. This compactness is particularly advantageous in industries such as automotive, aerospace, and robotics, where efficient power transmission is required in confined spaces.

4. Versatile Gear Ratios:

Epicyclic gears provide a wide range of gear ratios, which allows machinery to adapt to different operational requirements. By selecting the appropriate combination of gear engagement and gear ratios, the speed and torque characteristics of the machinery can be tailored to specific applications. This versatility in gear ratios enhances the flexibility and performance of machinery across various industries.

5. Precise Control:

Epicyclic gears enable precise control over power transmission within machinery. The combination of rotational and orbital motion in planetary gear sets allows for smooth and precise adjustments of speed and torque. This level of control is crucial in applications that require accurate positioning, speed regulation, and responsive power transfer.

6. Multiple Functions:

Epicyclic gears offer various functions beyond power transmission. They can be utilized for directional changes, torque splitting, braking, and speed synchronization. These additional functions enhance the versatility and efficiency of machinery, allowing for complex operations and improved overall performance.

Overall, epicyclic gears contribute to power transmission in machinery by providing gear reduction, torque multiplication, compactness, versatile gear ratios, precise control, and multiple functions. Their unique design and capabilities make them a valuable component in a wide range of industries and applications.

China OEM HD469-2403016 4110001187053 Plant Gear for CZPT Lgmg Mt86 Mt86h Mt95 Mt96L Tonly 875 875b 883 885 supplier China OEM HD469-2403016 4110001187053 Plant Gear for CZPT Lgmg Mt86 Mt86h Mt95 Mt96L Tonly 875 875b 883 885 supplier
editor by CX 2023-09-12

China factory Planetary Gear Set Ring Epicyclic Reduction Planet Pinion Pitch Drive Mini Gearbox Kavitsu Speed Reducer CZPT 300 Series Apex Servo Double Shaft Gearbox gear cycle

Product Description

             planetary gear set ring epicyclic reduction planet pinion               Pitch Drive mini gearbox kavitsu speed reducer bonfiglioli                         300 series apex servo double shaft gearbox

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

epicyclic gear

What are the benefits of using epicyclic gears in wind turbines?

Epicyclic gears, also known as planetary gears, offer several benefits when used in wind turbines. Here’s a detailed explanation:

1. Compact and Lightweight Design:

Epicyclic gears provide a compact and lightweight design for wind turbines. This is particularly advantageous in the nacelle, where space and weight constraints are critical. The compactness of epicyclic gears allows for more efficient use of available space and reduces the overall weight of the turbine, which simplifies transportation, installation, and maintenance processes.

2. High Power Density:

Epicyclic gears offer high power density, which means they can handle a significant amount of power transmission in a relatively small volume. This is particularly beneficial in wind turbines, where the generation of large amounts of power is required. The high power density of epicyclic gears allows for the efficient transfer of power from the rotor to the generator.

3. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of premature wear or failure. In wind turbines, where the loads can be substantial, epicyclic gears contribute to improved durability and reliability.

4. Variable Speed Operation:

Epicyclic gears facilitate variable speed operation in wind turbines. By adjusting the gear ratio, the rotational speed of the generator can be optimized to match the varying wind conditions. This allows the turbine to operate at its peak efficiency, maximizing power generation and improving overall energy conversion.

5. Torque Limiting and Overload Protection:

The design of epicyclic gears allows for torque limiting and overload protection in wind turbines. By incorporating torque limiters or automatic shutdown mechanisms, excessive loads or sudden gusts of wind can be mitigated. This protects the gearbox and other components from damage and extends their operational lifespan.

6. Redundancy and Fault Tolerance:

Epicyclic gears can be configured in redundant arrangements, providing fault tolerance in wind turbines. By using multiple sets of gears, if one gear set fails, the remaining gears can continue to operate, ensuring the functionality of the turbine. This redundancy enhances the reliability and availability of the wind turbine, reducing downtime and maintenance costs.

Overall, the benefits of using epicyclic gears in wind turbines include compactness, high power density, load distribution, variable speed operation, torque limiting, and fault tolerance. These advantages contribute to the efficient and reliable operation of wind turbines, promoting renewable energy generation.

epicyclic gear

How do epicyclic gears contribute to reducing gear wear and noise?

Epicyclic gears, also known as planetary gears, offer several advantages that contribute to reducing gear wear and noise. Here’s a detailed explanation:

1. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of wear and fatigue failure. By sharing the load, epicyclic gears can handle higher torque levels while reducing the wear on specific gear teeth.

2. Increased Tooth Contact Ratio:

Epicyclic gears typically have a higher tooth contact ratio compared to other gear types, such as spur or helical gears. The tooth contact ratio refers to the number of teeth in contact at any given time. A higher tooth contact ratio results in a smoother distribution of load and reduces localized contact stresses. This helps to minimize wear and noise generation during gear operation.

3. Balanced Loading:

The design of epicyclic gears allows for balanced loading of the gear teeth. The load is distributed among multiple planet gears, and each gear tooth engages with multiple teeth on both the sun gear and the ring gear simultaneously. This balanced loading helps to minimize tooth deflection and backlash, reducing wear and noise generation.

4. Lubrication:

Epicyclic gears benefit from effective lubrication due to their design. The gear teeth are constantly immersed in the lubricant, which helps reduce friction and wear. Proper lubrication also helps to dampen vibrations and reduce noise generated during gear operation.

5. Controlled Speed and Load Transitions:

Epicyclic gears can provide smooth speed and load transitions due to their ability to change gear ratios. When transitioning from one gear ratio to another, the gear engagement can be carefully controlled to minimize sudden shocks or impacts, which can contribute to wear and noise. The controlled speed and load transitions in epicyclic gears help reduce gear wear and noise levels.

6. Precision Manufacturing:

Epicyclic gears are often manufactured with high precision to ensure accurate gear meshing and minimize manufacturing errors. Precise gear manufacturing helps to maintain proper alignment and minimize tooth misalignment, which can lead to increased wear and noise.

In summary, the load distribution, increased tooth contact ratio, balanced loading, lubrication, controlled speed and load transitions, and precision manufacturing of epicyclic gears all contribute to reducing gear wear and noise. These factors make epicyclic gears a favorable choice in applications where minimizing wear and noise levels is important.

epicyclic gear

Can you explain the concept of planetary gear sets in epicyclic systems?

In epicyclic gear systems, planetary gear sets play a fundamental role. Here’s a detailed explanation of the concept:

1. Definition:

A planetary gear set consists of three main components: a central sun gear, multiple planet gears, and an outer ring gear, also known as the annular gear. The planet gears are typically mounted on a carrier, which allows them to rotate around the sun gear.

2. Gear Engagement:

The teeth of the planet gears mesh with both the sun gear and the annular gear. The sun gear is positioned at the center and is surrounded by the planet gears. The annular gear has internal teeth that engage with the planet gears, while its external teeth provide the outer boundary of the gear system.

3. Gear Motion:

The motion of a planetary gear set involves a combination of rotational and orbital motion. When the sun gear rotates, it causes the planet gears to rotate around their own axes while simultaneously orbiting around the sun gear.

4. Gear Ratios:

Planetary gear sets offer various gear ratios depending on how the components are held or driven. The gear ratio is determined by the number of teeth on the gears and the arrangement of the gear engagement. By fixing one component and driving another, different gear ratios can be achieved.

5. Gear Functions:

The arrangement and motion of planetary gear sets allow for a wide range of functions in epicyclic systems, including:

  • Speed Reduction: By fixing the sun gear and rotating the carrier or annular gear, the output speed can be reduced compared to the input speed.
  • Speed Increase: By fixing the carrier or annular gear and rotating the sun gear, the output speed can be increased compared to the input speed.
  • Directional Changes: Changing the gear engagement arrangement allows reversing the direction of rotation between the input and output shafts.
  • Torque Multiplication: The gear ratios in a planetary gear set enable torque multiplication, providing mechanical advantage between the input and output.
  • Braking: By holding specific components, such as the sun gear or the carrier, the gear system can act as a brake, preventing rotation or controlling the speed of the output shaft.

Planetary gear sets are widely used in various applications, including automotive transmissions, gearboxes, power tools, and robotics. Their compact size, versatility in gear ratios, and ability to perform different functions make them essential components in many mechanical systems.

China factory Planetary Gear Set Ring Epicyclic Reduction Planet Pinion Pitch Drive Mini Gearbox Kavitsu Speed Reducer CZPT 300 Series Apex Servo Double Shaft Gearbox gear cycleChina factory Planetary Gear Set Ring Epicyclic Reduction Planet Pinion Pitch Drive Mini Gearbox Kavitsu Speed Reducer CZPT 300 Series Apex Servo Double Shaft Gearbox gear cycle
editor by CX 2023-09-11

China wholesaler Multi Stage Planetary Gearbox Inline Epicyclic Gear Reduction Drive NEMA Hydraulic Single Sun Planet Epicyclic Micro Motor Two Stage Precision Bevel Planetary raw gear

Product Description

               Multi stage planetary gearbox inline epicyclic gear reduction drive nema hydraulic single sun planet epicyclic micro motor 2 stage precision bevel planetary 

Application of planetary gearbox

Planetary gearboxes are used in a wide variety of applications, including:

  • Machine tools: Planetary gearboxes are used in machine tools to provide high torque and low speed. This is necessary for operations such as milling, drilling, and turning.
  • Robotics: Planetary gearboxes are used in robotics to provide precise motion control. This is necessary for operations such as pick-and-place, assembly, and welding.
  • Lifting equipment: Planetary gearboxes are used in lifting equipment to provide high torque and low speed. This is necessary for operations such as lifting and lowering loads.
  • Wind turbines: Planetary gearboxes are used in wind turbines to convert the rotational motion of the turbine blades into electrical power.
  • Electric vehicles: Planetary gearboxes are used in electric vehicles to transmit power from the motor to the wheels.
  • Other: Planetary gearboxes can also be used in a variety of other applications, such as cameras, printers, and food processors.

Planetary gearboxes are a type of gear reducer that uses a planetary gear train to transmit power. Planetary gear trains are compact and efficient, and they can be used to achieve a wide range of gear ratios. Planetary gearboxes are available in a variety of sizes and configurations, and can be customized to meet the specific requirements of an application.

Here are some of the advantages of using planetary gearboxes:

  • Compact: Planetary gearboxes are relatively compact, which makes them ideal for applications where space is limited.
  • Efficient: Planetary gearboxes are very efficient, meaning that they can transmit a lot of power with a relatively small amount of input power.
  • Reliable: Planetary gearboxes are very reliable and can withstand a lot of wear and tear.
  • Versatile: Planetary gearboxes can be used in a variety of applications, making them a versatile option for power transmission.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

epicyclic gear

How do epicyclic gear systems provide different gear ratios within a compact design?

Epicyclic gear systems, also known as planetary gear systems, offer the advantage of providing different gear ratios while maintaining a compact design. Here’s a detailed explanation:

Epicyclic gear systems achieve different gear ratios through the interaction of the sun gear, planet gears, and ring gear. The arrangement and engagement of these gears determine the resulting gear ratios. Here’s how it works:

1. Sun Gear and Ring Gear Sizes:

The gear ratio is influenced by the relative sizes of the sun gear and the ring gear. The number of teeth on these gears determines their effective radius and, consequently, the gear ratio. For example, a larger sun gear or a smaller ring gear will result in a higher gear ratio, providing gear reduction.

2. Planet Gear Engagement:

The planet gears in an epicyclic gear system engage with both the sun gear and the ring gear. The number of teeth on the planet gears affects the gear ratio as well. By altering the number of teeth on the planet gears, different gear ratios can be achieved. Increasing the number of teeth on the planet gears compared to the sun gear or the ring gear will result in a higher gear ratio.

3. Gear Arrangement:

The arrangement of the sun gear, planet gears, and ring gear also plays a role in providing different gear ratios. In a basic epicyclic gear system, the planet gears are evenly spaced around the sun gear and engage with the internal teeth of the ring gear. However, by modifying the arrangement, such as using multiple sets of planet gears or incorporating additional gears, more complex gear ratios can be achieved.

4. Multiple Stages:

Epicyclic gear systems can also utilize multiple stages to further expand the range of available gear ratios. Multiple stages involve connecting multiple sets of epicyclic gear systems in series. Each stage can have its own gear ratio, and by combining the gear ratios of each stage, a wide range of overall gear ratios can be achieved.

5. Compact Design:

Epicyclic gear systems offer a compact design due to the coaxial arrangement of the sun gear, planet gears, and ring gear. The planet gears are mounted on a carrier, which revolves around the sun gear while engaging with the ring gear. This arrangement allows for a high gear reduction or multiplication within a relatively small space, making epicyclic gears well-suited for applications where size and weight constraints are critical.

Overall, through the careful selection of gear sizes, gear engagement, gear arrangement, and the possibility of multiple stages, epicyclic gear systems provide different gear ratios while maintaining a compact design. This versatility in gear ratios makes them highly adaptable to a wide range of applications across various industries.

epicyclic gear

What is the effect of various planetary gear arrangements on gear ratios?

The arrangement of planetary gears in an epicyclic gear system can have different effects on the resulting gear ratios. Here’s a detailed explanation:

1. Simple Planetary Gear:

In a simple planetary gear arrangement, the sun gear is the input, the ring gear is the output, and the planet gears are held stationary or act as idlers. The gear ratio in this configuration is determined by the number of teeth on the sun gear and the ring gear. The gear ratio formula can be expressed as R = (1 + S) / S, where R is the gear ratio and S is the number of teeth on the sun gear.

2. Compound Planetary Gear:

A compound planetary gear arrangement includes multiple sets of planetary gears. This arrangement can achieve higher gear ratios by utilizing multiple gear stages. Each stage consists of a sun gear, planet gears, and a ring gear. The output of one stage becomes the input for the next stage, resulting in a cumulative gear ratio. The overall gear ratio is the product of the individual gear ratios of each stage.

3. Multi-Stage Planetary Gear:

A multi-stage planetary gear arrangement combines multiple simple or compound planetary gearsets in series. Each gearset has its own gear ratio, and the output of one gearset becomes the input for the next gearset. This arrangement allows for even higher gear ratios by multiplying the individual gear ratios of each gearset. The overall gear ratio is the product of the gear ratios of all the gearsets.

4. Ravigneaux Planetary Gear:

A Ravigneaux planetary gear arrangement consists of two sets of planetary gears, with one set acting as a compound gear. This arrangement allows for different gear ratios depending on the engagement of clutches or brakes. By selectively engaging or disengaging certain elements, different gear ratios can be achieved, providing versatility in speed control and gear reduction.

5. Simpson Planetary Gear:

A Simpson planetary gear arrangement consists of three sets of planetary gears. It offers multiple gear ratios by selectively engaging or disengaging clutches or brakes on different gear elements. This arrangement provides a range of gear ratios and allows for more flexibility in speed control and power transmission.

6. Hybrid Planetary Gear:

A hybrid planetary gear arrangement combines different types of planetary gearsets, such as compound, Ravigneaux, or Simpson. This arrangement offers a wide range of gear ratios and allows for more complex speed control and power transmission requirements.

In summary, the various planetary gear arrangements, including simple, compound, multi-stage, Ravigneaux, Simpson, and hybrid, have different effects on gear ratios. These arrangements enable the achievement of specific gear ratios, cumulative gear ratios, or a combination of different gear ratios, providing versatility in speed control, gear reduction, and power transmission in a wide range of applications.

epicyclic gear

What is an epicyclic gear and how does it function?

An epicyclic gear, also known as a planetary gear, is a gear system that consists of one or more outer gears, an inner gear, and a central gear, known as a sun gear. Here’s a detailed explanation of how it functions:

1. Gear Arrangement:

In an epicyclic gear system, the sun gear is located at the center and is surrounded by multiple outer gears, also called planet gears. The planet gears are typically mounted on a carrier, which allows them to rotate around the central sun gear.

2. Gear Engagement:

The teeth of the planet gears mesh with both the sun gear and an outer ring gear, also known as the annular gear. The annular gear has internal teeth that engage with the planet gears and external teeth that provide the outer boundary of the gear system.

3. Input and Output:

The input and output connections can be achieved in different ways depending on the design. Typically, the sun gear serves as the input shaft, while the carrier or the annular gear acts as the output shaft. The rotation of the input shaft (sun gear) causes the planet gears to orbit around it and rotate, resulting in the output shaft’s motion.

4. Gear Ratios:

An essential feature of epicyclic gears is their ability to provide different gear ratios by changing the arrangement of the gears. By holding one component stationary, such as fixing the annular gear or the carrier, and driving another component, the gear system can achieve various speed and torque combinations.

5. Gear Functions:

Epicyclic gears have several useful functions in mechanical systems, including:

  • Speed reduction: By fixing the sun gear and rotating the carrier or the annular gear, the output speed can be reduced compared to the input speed.
  • Speed increase: By fixing the carrier or the annular gear and rotating the sun gear, the output speed can be increased compared to the input speed.
  • Directional changes: Changing the gear engagement arrangement allows reversing the direction of rotation between the input and output shafts.
  • Torque multiplication: By utilizing the gear ratios, an epicyclic gear system can multiply or divide the torque between the input and output shafts, providing mechanical advantage.
  • Braking: By holding specific components, such as the sun gear or the carrier, the gear system can act as a brake, preventing rotation or controlling the speed of the output shaft.

Epicyclic gears find applications in various mechanical systems, including automotive transmissions, gearboxes, power tools, and robotics, due to their compact size, versatility, and ability to achieve multiple gear ratios within a single gear system.

China wholesaler Multi Stage Planetary Gearbox Inline Epicyclic Gear Reduction Drive NEMA Hydraulic Single Sun Planet Epicyclic Micro Motor Two Stage Precision Bevel Planetary raw gearChina wholesaler Multi Stage Planetary Gearbox Inline Epicyclic Gear Reduction Drive NEMA Hydraulic Single Sun Planet Epicyclic Micro Motor Two Stage Precision Bevel Planetary raw gear
editor by CX 2023-09-08

China manufacturer Transmission Gearhead Gear Motor Winch Wheel Drive Speed Precision Reducer Reduction Epicyclic Inline Planetary Gearbox Industrial worm gear winch

Product Description

Transmission Gearhead Gear Motor Winch Wheel Drive Speed Precision Reducer Reduction Epicyclic Inline Planetary Gearbox Industrial

Application of Planetary Gearbox

Planetary gearboxes are used in a wide variety of applications, including:

  • Robotics: Planetary gearboxes are often used in robotic actuators, as they can provide high torque and low backlash. This makes them ideal for applications where precise control is required, such as in pick-and-place robots.
  • Aerospace: Planetary gearboxes are also used in aerospace applications, such as in aircraft landing gear and flight control systems. This is because they can withstand the high loads and vibrations that are common in these environments.
  • Machine tools: Planetary gearboxes are used in machine tools, such as milling machines and lathes. This is because they can provide high torque and smooth operation, which is essential for precision machining.
  • Food processing: Planetary gearboxes are used in food processing equipment, such as mixers and grinders. This is because they can provide high efficiency and smooth operation, which is important for food safety.
  • Textile machinery: Planetary gearboxes are used in textile machinery, such as spinning and weaving machines. This is because they can provide high efficiency and smooth operation, which is important for the quality of the fabric.

In general, planetary gearboxes are used in applications where high torque, low backlash, and smooth operation are required. They are a versatile type of gearbox that can be used in a wide variety of industries.

Here are some additional advantages of planetary gearboxes:

  • High efficiency: Planetary gearboxes are very efficient, with efficiency ratings of up to 98%. This is due to the fact that they use rolling contact instead of sliding contact, which reduces friction.
  • Long life: Planetary gearboxes have a long service life, with some models lasting for over 1 million hours. This is due to the fact that they are made with high-quality materials and are designed to withstand high loads and vibrations.
  • Low maintenance: Planetary gearboxes require very little maintenance, as there are no gears to mesh and wear. This makes them a cost-effective option for long-term use.

If you are looking for a gearbox that can provide high torque, low backlash, smooth operation, high efficiency, long life, and low maintenance, then a planetary gearbox is a good choice.

Here are some specific examples of applications where planetary gearboxes are used:

  • Automotive: Planetary gearboxes are used in a variety of automotive applications, including power steering, transmission, and differential.
  • Machine tools: Planetary gearboxes are used in a variety of machine tools, including milling machines, lathes, and grinders.
  • Robotics: Planetary gearboxes are used in a variety of robotic applications, including pick-and-place robots, assembly robots, and welding robots.
  • Aerospace: Planetary gearboxes are used in a variety of aerospace applications, including aircraft landing gear, flight control systems, and satellite stabilization systems.
  • Construction: Planetary gearboxes are used in a variety of construction applications, including excavators, cranes, and bulldozers.

Planetary gearboxes are a versatile type of gearbox that can be used in a wide variety of applications. They are characterized by their high torque, low backlash, and smooth operation. These features make them ideal for applications where precision and control are important.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

epicyclic gear

How does an epicyclic gear mechanism work in automatic transmissions?

An epicyclic gear mechanism, also known as a planetary gear system, plays a crucial role in the operation of automatic transmissions. Here’s a detailed explanation:

An automatic transmission utilizes a combination of different clutches, bands, and an epicyclic gear system to achieve gear ratios and control the transfer of power from the engine to the wheels. The epicyclic gear mechanism consists of the following components:

1. Sun Gear:

The sun gear is a central gear placed at the center of the mechanism. It receives power from the engine and is connected to the input shaft of the transmission.

2. Planet Gears:

Several planet gears are arranged around the sun gear and mesh with both the sun gear and the ring gear. The planet gears are mounted on a carrier, which allows them to rotate around the sun gear.

3. Ring Gear:

The ring gear is the outermost gear in the mechanism and has internal teeth that engage with the planet gears. The ring gear is connected to the output shaft, which transfers power to the wheels.

Here’s how the epicyclic gear mechanism works in an automatic transmission:

1. Neutral Position:

In the neutral position, no gears are engaged, and power flows freely through the transmission without any gear reduction or multiplication. The sun gear and the ring gear remain stationary.

2. Gear Engagement:

When a specific gear is selected, hydraulic clutches and bands are used to engage and disengage various elements of the epicyclic gear mechanism. The clutches and bands selectively hold and release specific gears to achieve the desired gear ratio.

3. Gear Ratios:

The gear ratio is determined by the arrangement and engagement of the gears in the epicyclic gear system. The sun gear, planet gears, and ring gear interact to produce different gear ratios. By selectively holding or releasing specific gears using clutches and bands, different gear ratios can be achieved, allowing the transmission to adapt to different driving conditions.

4. Power Flow:

The power flows through the different elements of the epicyclic gear mechanism based on the gear ratio selected. The input power from the engine is transmitted to the sun gear. Depending on the gear ratio, power is then transferred to the planet gears and the ring gear. The output shaft, connected to the ring gear, receives the power and transfers it to the wheels, propelling the vehicle.

5. Shifting Gears:

When shifting gears, the hydraulic control system of the transmission adjusts the engagement of the clutches and bands, causing the epicyclic gear mechanism to shift to a different gear ratio. This allows for seamless and automatic gear changes without the need for manual shifting.

Overall, the epicyclic gear mechanism in automatic transmissions enables the transmission to provide different gear ratios, control power flow, and facilitate smooth gear shifting. This mechanism plays a crucial role in the efficient and automatic operation of automatic transmissions in vehicles.

epicyclic gear

Can you explain the function of an epicyclic gear system in a helicopter’s rotor?

An epicyclic gear system, also known as a planetary gear system, plays a crucial function in a helicopter’s rotor. Here’s a detailed explanation:

1. Power Transmission:

The primary function of the epicyclic gear system in a helicopter’s rotor is to transmit power from the engine to the rotor blades. The system acts as a mechanical interface between the engine and the rotor, transferring torque and rotational motion effectively.

2. Gear Reduction:

The epicyclic gear system allows for gear reduction, which is essential in a helicopter rotor system. The high-speed rotation of the engine is converted into a lower rotational speed but increased torque at the rotor. This gear reduction enables the rotor blades to achieve the necessary lift and control, even with the high rotational speed of the engine.

3. Speed Control:

The epicyclic gear system provides speed control capabilities for the helicopter’s rotor. By adjusting the gear ratios within the system, the rotational speed of the rotor blades can be controlled. This speed control is vital for various flight maneuvers, such as takeoff, landing, hovering, and forward flight.

4. Torque Distribution:

An important function of the epicyclic gear system is to distribute torque evenly among the rotor blades. The system ensures that the torque generated by the engine is evenly distributed across all the blades, resulting in balanced lift and stable flight characteristics.

5. Autorotation:

The epicyclic gear system also enables autorotation, which is a critical safety feature in helicopters. During an engine failure, the system allows the rotor blades to continue rotating solely due to the upward airflow. This autorotation provides a controlled descent and allows the pilot to maintain some level of control over the helicopter’s flight path during an emergency.

6. Feathering:

Feathering refers to the ability to adjust the pitch angle of the rotor blades collectively. The epicyclic gear system incorporates mechanisms that enable feathering, allowing the pilot to change the pitch angle of all the blades simultaneously. This adjustment is used to optimize the helicopter’s performance in different flight conditions, such as reducing drag or increasing lift.

7. Mechanical Isolation:

The epicyclic gear system provides mechanical isolation between the engine and the rotor blades. This isolation helps dampen vibrations and reduces the transmission of engine-induced vibrations to the rotor system. It contributes to smoother operation, improved comfort, and reduced stress on the overall helicopter structure.

In summary, the function of an epicyclic gear system in a helicopter’s rotor includes power transmission, gear reduction, speed control, torque distribution, autorotation capability, feathering control, and mechanical isolation. These functions are critical for achieving efficient and safe helicopter operations, enabling lift generation, flight control, and maneuverability.

epicyclic gear

How do epicyclic gears contribute to power transmission in machinery?

Epicyclic gears, also known as planetary gears, play a crucial role in power transmission within machinery. Here’s a detailed explanation of their contribution:

1. Gear Reduction:

Epicyclic gears allow for significant gear reduction, which is the process of reducing the rotational speed of the output shaft compared to the input shaft. By configuring the gear engagement and gear ratios, epicyclic gears can achieve high reduction ratios, enabling machinery to operate at lower speeds while maintaining high torque output.

2. Torque Multiplication:

Epicyclic gears also provide torque multiplication, which is the process of increasing the torque output compared to the torque applied at the input. By utilizing the gear ratios and gear arrangement, epicyclic gears can effectively multiply the torque, allowing machinery to generate higher rotational force for heavy-duty applications.

3. Compactness:

Epicyclic gears offer a compact design, making them ideal for applications where space is limited. The arrangement of the sun gear, planet gears, and annular gear allows for a high gear reduction or multiplication within a small footprint. This compactness is particularly advantageous in industries such as automotive, aerospace, and robotics, where efficient power transmission is required in confined spaces.

4. Versatile Gear Ratios:

Epicyclic gears provide a wide range of gear ratios, which allows machinery to adapt to different operational requirements. By selecting the appropriate combination of gear engagement and gear ratios, the speed and torque characteristics of the machinery can be tailored to specific applications. This versatility in gear ratios enhances the flexibility and performance of machinery across various industries.

5. Precise Control:

Epicyclic gears enable precise control over power transmission within machinery. The combination of rotational and orbital motion in planetary gear sets allows for smooth and precise adjustments of speed and torque. This level of control is crucial in applications that require accurate positioning, speed regulation, and responsive power transfer.

6. Multiple Functions:

Epicyclic gears offer various functions beyond power transmission. They can be utilized for directional changes, torque splitting, braking, and speed synchronization. These additional functions enhance the versatility and efficiency of machinery, allowing for complex operations and improved overall performance.

Overall, epicyclic gears contribute to power transmission in machinery by providing gear reduction, torque multiplication, compactness, versatile gear ratios, precise control, and multiple functions. Their unique design and capabilities make them a valuable component in a wide range of industries and applications.

China manufacturer Transmission Gearhead Gear Motor Winch Wheel Drive Speed Precision Reducer Reduction Epicyclic Inline Planetary Gearbox Industrial worm gear winchChina manufacturer Transmission Gearhead Gear Motor Winch Wheel Drive Speed Precision Reducer Reduction Epicyclic Inline Planetary Gearbox Industrial worm gear winch
editor by CX 2023-09-07