China Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gear

Product Description

Product Description

Product Parameters

Item Spur Gear Axle Shaft
Material 4140,4340,40Cr,42Crmo,42Crmo4,20Cr,20CrMnti, 20Crmo,35Crmo
OEM NO Customize
Certification ISO/TS16949
Test Requirement Magnetic Powder Test, Hardness Test, Dimension Test
Color Paint , Natural Finish ,Machining All Around
Material Aluminum: 5000series(5052…)/6000series(6061…)/7000series(7075…)
Steel: Carbon Steel,Middle Steel,Steel Alloy,etc.
Stainess Steel: 303/304/316,etc.
Copper/Brass/Bronze/Red Copper,etc.
Plastic:ABS,PP,PC,Nylon,Delrin(POM),Bakelite,etc.
Size According to Customer’s drawing or samples
Process CNC machining,Turning,Milling,Stamping,Grinding,Welding,Wire Injection,Cutting,etc.
Tolerance ≥+/-0.03mm
Surface Treatment (Sandblast)&(Hard)&(Color)Anodizing,(Chrome,Nickel,Zinc…)Plating,Painting,Powder Coating,Polishing,Blackened,Hardened,Lasering,Engraving,etc.
File Formats ProE,SolidWorks,UG,CAD,PDF(IGS,X-T,STP,STL)
Sample Available
Packing Spline protect cover ,Wood box ,Waterproof membrane; Or per customers’ requirements.

 

Our Advantages

Why Choose US ???

1. Equipment :

Our company boasts all necessary production equipment,
including Hydraulic press machines, Japanese CNC lathe (TAKISAWA), Korean gear hobbing machine (I SNT), gear shaping machine, machining center, CNC grinder, heat treatment line etc.

2. Processing precision:

We are a professional gear & gear shafts manufacturer. Our gears are around 6-7 grade in mass production.

3. Company:

We have 90 employees, including 10 technical staffs. Covering an area of 20000 square meters.

4. Certification :

Oue company has passed ISO 14001 and TS16949

5.Sample service :

We provide free sample for confirmation and customer bears the freight charges

6.OEM service :

Having our own factory and professional technicians,we welcome OEM orders as well.We can design and produce the specific product you need according to your detail information

 

Cooperation Partner

Company Profile

Our Featured Products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Type: Circular Gear
Sample Service: Free
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicyclic gear

What are the benefits of using epicyclic gears in wind turbines?

Epicyclic gears, also known as planetary gears, offer several benefits when used in wind turbines. Here’s a detailed explanation:

1. Compact and Lightweight Design:

Epicyclic gears provide a compact and lightweight design for wind turbines. This is particularly advantageous in the nacelle, where space and weight constraints are critical. The compactness of epicyclic gears allows for more efficient use of available space and reduces the overall weight of the turbine, which simplifies transportation, installation, and maintenance processes.

2. High Power Density:

Epicyclic gears offer high power density, which means they can handle a significant amount of power transmission in a relatively small volume. This is particularly beneficial in wind turbines, where the generation of large amounts of power is required. The high power density of epicyclic gears allows for the efficient transfer of power from the rotor to the generator.

3. Load Distribution:

The arrangement of multiple planet gears in an epicyclic gear system helps distribute the load evenly across the gear teeth. This load distribution minimizes stress concentration on individual gear teeth, reducing the risk of premature wear or failure. In wind turbines, where the loads can be substantial, epicyclic gears contribute to improved durability and reliability.

4. Variable Speed Operation:

Epicyclic gears facilitate variable speed operation in wind turbines. By adjusting the gear ratio, the rotational speed of the generator can be optimized to match the varying wind conditions. This allows the turbine to operate at its peak efficiency, maximizing power generation and improving overall energy conversion.

5. Torque Limiting and Overload Protection:

The design of epicyclic gears allows for torque limiting and overload protection in wind turbines. By incorporating torque limiters or automatic shutdown mechanisms, excessive loads or sudden gusts of wind can be mitigated. This protects the gearbox and other components from damage and extends their operational lifespan.

6. Redundancy and Fault Tolerance:

Epicyclic gears can be configured in redundant arrangements, providing fault tolerance in wind turbines. By using multiple sets of gears, if one gear set fails, the remaining gears can continue to operate, ensuring the functionality of the turbine. This redundancy enhances the reliability and availability of the wind turbine, reducing downtime and maintenance costs.

Overall, the benefits of using epicyclic gears in wind turbines include compactness, high power density, load distribution, variable speed operation, torque limiting, and fault tolerance. These advantages contribute to the efficient and reliable operation of wind turbines, promoting renewable energy generation.

epicyclic gear

What are the challenges associated with designing and manufacturing epicyclic gears?

Designing and manufacturing epicyclic gears, also known as planetary gears, can present several challenges. Here’s a detailed explanation:

1. Complex Geometry:

Epicyclic gears have a complex geometry due to the arrangement of multiple gears and the interactions between the sun gear, planet gears, and ring gear. Designing the gear profiles and ensuring proper gear meshing requires advanced mathematical calculations and modeling techniques.

2. Gear Tooth Profile Design:

The design of the gear tooth profiles is critical to ensure smooth and efficient gear operation. Achieving the correct tooth profiles, such as involute or cycloidal, requires precise calculations and considerations for factors like tooth strength, backlash, and clearance.

3. Load Distribution and Gear Sizing:

Determining the appropriate number of planet gears and their sizing is crucial for achieving proper load distribution. The load distribution affects gear durability and performance. Designers must carefully analyze the load distribution and consider factors such as torque, speed, and material properties to ensure optimal gear sizing.

4. Manufacturing Tolerances:

Epicyclic gears have tight manufacturing tolerances due to their complex geometry and the need for precise gear meshing. Achieving the required tolerances during the manufacturing process can be challenging and may require specialized equipment and techniques.

5. Assembly and Alignment:

Proper assembly and alignment of the gear components are crucial for achieving smooth gear operation and minimizing wear. Aligning the gears with high accuracy during assembly can be challenging, especially in large gear systems where multiple components need to be precisely aligned.

6. Lubrication and Cooling:

Epicyclic gears require effective lubrication and cooling to ensure optimal performance and durability. Designing proper lubrication systems and ensuring effective cooling in the gear system can be challenging, especially in applications where gears operate under high loads and speeds.

7. Noise and Vibration:

Epicyclic gears can generate noise and vibrations during operation, which can be undesirable in certain applications. Designing gears that minimize noise and vibration requires careful consideration of factors such as gear tooth profiles, gear meshing, and damping techniques.

8. Cost and Complexity:

Designing and manufacturing epicyclic gears can be cost-intensive and complex compared to simpler gear systems. The complexity of the gear geometry, manufacturing tolerances, and assembly requirements can contribute to higher production costs and increased manufacturing challenges.

In summary, the challenges associated with designing and manufacturing epicyclic gears include complex geometry, gear tooth profile design, load distribution and gear sizing, manufacturing tolerances, assembly and alignment, lubrication and cooling, noise and vibration, as well as cost and complexity. Overcoming these challenges requires advanced design and manufacturing techniques, precision engineering, and careful consideration of various factors to ensure optimal gear performance and durability.

epicyclic gear

What is the role of a sun gear, planet gears, and ring gear in an epicyclic arrangement?

In an epicyclic gear arrangement, the sun gear, planet gears, and ring gear each have specific roles and functions. Here’s a detailed explanation:

1. Sun Gear:

The sun gear is the central gear component in an epicyclic arrangement. Its primary role is to provide the input rotational motion or power to the gear system. The sun gear is typically located at the center and is surrounded by the planet gears. It engages with the planet gears through meshing teeth, transmitting rotational force to them.

2. Planet Gears:

The planet gears are multiple gears that revolve around the sun gear in an epicyclic arrangement. They are mounted on a carrier, which holds and supports the planet gears. The planet gears mesh with both the sun gear and the ring gear. As the sun gear rotates, it causes the planet gears to rotate around their own axes while simultaneously orbiting around the sun gear. The planet gears transmit the rotational motion and torque from the sun gear to the ring gear.

3. Ring Gear:

The ring gear, also known as the annular gear or the outer gear, is the outermost gear component in an epicyclic arrangement. It has internal teeth that mesh with the planet gears. The ring gear provides the outer boundary of the gear system and engages with the planet gears, transferring the rotational motion and torque from the planet gears to the output or the next stage of the gear system. In some arrangements, the ring gear is fixed or held stationary, while in others, it can rotate.

The combination and interaction of the sun gear, planet gears, and ring gear in an epicyclic arrangement enable various gear functions, such as gear reduction, torque multiplication, speed control, and directional changes. The arrangement and engagement of these gears determine the gear ratios and overall performance of the gear system.

China Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gearChina Hot selling Epicyclic Spur Transmission Planetary Sun Gear worm and wheel gear
editor by CX 2024-03-26