Product Description
Customized Machining Tractor/Planet/Planetary/Epicyclic CHINAMFG Gear
Product Description
Major Products:
spur gear; worm gear; bevel gear; planetary gear; gear; metal gear; cycle gear; pinion gear; gear
manufacturing; helical gear; custom gear; spiral bevel gear; rack and pinion gear; mechanical
gears; transmission gears; rack gear; spiral gear; work gear; gear reducer; richmond gear;
hypoid gear; gear wheels; pulleys and gears; motive gear; gear teeth; truck gear; gear system;
involute gear.
|
Material |
Steel:Carbon steel/ Mild steel/ Cold roll steel/ Hot roll steel |
|
Surface Treatment |
Zinc plating, Powder, Passivation, Sand blasting, Brushing & ploshing etc. |
|
Processing Equipment |
Large laser cutter Bending machine Plasma cutting machine Punching machine Wire cutter CNC machining center CNC lathe Automatic lathe machine Milling machine Drilling machine |
|
Drawing Format |
pdf/.igs./.stp/x_t. etc. |
|
Drawing Format |
EXW, FOB, CIF |
|
Packing of Sheet Metal Stamping |
PE bag+carton box or other custom packaging |
|
Applications |
Auto Parts/Motocycle parts/Contruction Parts/Furniture Parts/Electronic Parts |
PRODUCT DESCRIPOTION
1. CHINAMFG wheel and pinion gears and spiral bevel gears for automobile rear axle, truck, tractor
front/rear axle and tool.
2. Raw material: 20CrMni \22CrMo \8620 \SCM420
Processing: Forging, normalizing, rough, machining, fine finishi, carburizing, tempering,
annealing, accurate grinding, matching and testing, packing.
3. The tooth surface is finished by lapping machine, the color will be silver gray
4. Hardness about surface: HRC58-62, internal: HRC35-40.
5. We can process gears according to customers drawing and samples.
Inspections:
3D instruments, 2D instruments, Projectors, Height Gauges, Inner diameter dial indicators, Dial gaues,
Thread and Pin gauges, Digital calipers,Micro calipers, Thickness testers, Hardness testers Roughness
testers, etc.( Detection accuracy to 0.001 millimetre )
| Mininum of Quantity | 100 Piece/Pieces |
| Unit Weight | 0.5kg~300kg |
| Price | FOB HangZhou,China,USD1.5~1.9 |
| Packing Details | Paper Box in Wooden Pallet |
| Delivery Time | One month |
| Payment Terms | L/C, T/T |
| Machining | CNC or |
| Supply Capacity | 50 Metric Tons per Month |
| Standard | DIN,ASTM,GOST,B |
Packaging & Shipping
Packing:
1: Shrink film+ bulk loading
2: Shrink film +Carton box + Pallet/ wooden case
3: PP + Wooden case
4: As per customers’ requirements or negotiated
FAQ
Q1: How can I get cnc spare parts sample?
1. Sample fee will be free if we have in stock, you just need to pay the shipping cost is OK.
2. The sample of your own design needs to pay for the mold set up charge. Samples production takes
5-7 working days after set up charge received & size drawing approval.
Q2: How to pay for the order?
There are 4 options to pay the order: Bank Transfer; Western Union; Paypal; Payoneer. Kindly choose
the most suitable way for you to arrange it.
Q3: What is the shipping method?
The samples were sent out by international airway express company like DHL, UPS, FedEx, TNT.
Usually takes around 5-7 working days (door to door service). We arrange goods shipment via sea
or air.
Q4: Can you give me help if my products are very urgent?
Yes, We can work overtime and add a few machines to produce these products if you need it urgently.
Q5: I want to keep our design in secret, can we CHINAMFG NDA?
Sure, we will not display any customers’ design or show to other people, we can CHINAMFG NDA.
You can look through our website to find your interest or email your any questions through
below approach! We will reply to you within 12 hours.
| Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery |
|---|---|
| Hardness: | Hardened Tooth Surface |
| Gear Position: | Internal Gear |
| Samples: |
US$ 4/Piece
1 Piece(Min.Order) | Order Sample machining gears
|
|---|
| Customization: |
Available
| Customized Request |
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

What are the advantages of using epicyclic gears in automotive transmissions?
Epicyclic gears, also known as planetary gears, offer several advantages when used in automotive transmissions. Here’s a detailed explanation:
1. Compact Design:
Epicyclic gears provide a compact design, allowing automotive transmissions to be more space-efficient compared to other gear arrangements. This is particularly beneficial in modern vehicles where available space is limited. The compactness of epicyclic gears enables manufacturers to design smaller and lighter transmissions, resulting in overall weight reduction and improved vehicle fuel efficiency.
2. Gear Ratio Flexibility:
Epicyclic gears offer a wide range of gear ratios through the combination of the sun gear, planet gears, and ring gear. This flexibility allows automotive transmissions to provide multiple gear ratios, enabling smooth gear shifting and optimal engine performance across various driving conditions. Epicyclic gear systems can incorporate different gear sets and stages to achieve specific gear ratios, enhancing the vehicle’s acceleration, towing capabilities, and fuel economy.
3. Efficient Power Transmission:
The design of epicyclic gears facilitates efficient power transmission. The multiple planet gears distribute torque evenly across the gear system, minimizing power losses and improving overall transmission efficiency. This efficiency is particularly important in automotive transmissions, where efficient power transfer is vital for the vehicle’s performance and fuel economy.
4. Torque Multiplication and Gear Reduction:
Epicyclic gears can be configured to provide torque multiplication or gear reduction, depending on the arrangement of the gears. This capability is utilized in automotive transmissions to increase torque output during low-speed or high-load conditions, such as when starting from a standstill or climbing steep hills. Torque multiplication improves the vehicle’s drivability and towing capacity, enhancing its overall performance.
5. Smooth and Seamless Gear Shifts:
Epicyclic gears contribute to smooth and seamless gear shifts in automotive transmissions. The design allows for overlapping engagement of gears during gear shifting, minimizing the interruption of power delivery and providing a smoother transition between gears. This results in improved driving comfort and reduced wear on transmission components.
6. Durability and Reliability:
Epicyclic gears are known for their durability and reliability, making them well-suited for automotive applications. The design distributes load and wear among multiple planet gears, reducing stress on individual gear teeth and prolonging the lifespan of the transmission. Additionally, the compact and enclosed nature of the gear system provides protection against contaminants and external elements, further enhancing its reliability.
These advantages make epicyclic gears a popular choice in automotive transmissions, as they contribute to improved vehicle performance, fuel efficiency, and overall driving experience.

What is the purpose of using epicyclic gears in robotics and automation?
Epicyclic gears, also known as planetary gears, serve several purposes in robotics and automation. Here’s a detailed explanation:
1. Compact Size:
Epicyclic gears offer a compact and space-efficient solution for transmitting torque and achieving different speed ratios. The arrangement of multiple gears within a single gear system allows for a high gear reduction or speed increase in a relatively small package. This compact size is particularly advantageous in robotics and automation applications where space is limited.
2. High Torque Transmission:
Epicyclic gears are capable of transmitting high torque levels due to their design. The load is distributed among multiple planet gears, allowing for a higher torque capacity compared to other gear types. This high torque transmission capability makes epicyclic gears suitable for applications that require precise and powerful motion control, such as robot joints and industrial automation systems.
3. Speed Control:
The arrangement of gears in an epicyclic gear system allows for precise control over speed ratios. By manipulating the input and output gears, different gear ratios can be achieved, enabling speed control and gear reduction or amplification. This speed control capability is essential in robotics and automation to achieve desired motion profiles and optimize system performance.
4. Backlash Minimization:
Epicyclic gears can be designed to minimize backlash, which is the angular clearance between gear teeth when there is no load applied. Backlash can introduce inaccuracies and delays in robotic and automation systems. By carefully designing gear tooth profiles and controlling gear meshing, epicyclic gears can reduce backlash, improving precision and responsiveness in motion control applications.
5. Efficiency and Durability:
Epicyclic gears can achieve high efficiency levels due to their rolling contact between gear teeth. This rolling contact results in less friction and energy loss compared to sliding contact gears. Additionally, the load distribution among multiple gear teeth reduces the stress on individual teeth, enhancing durability and prolonging the gear system’s lifespan.
6. Modular Design:
Epicyclic gears offer a modular design that allows for easy integration into robotic and automation systems. They can be combined with other mechanical components, such as motors and actuators, to create compact and efficient power transmission systems. The modular nature of epicyclic gears simplifies system design, assembly, and maintenance.
7. Reduction of Motor Torque Ripple:
In certain robotic applications, particularly those requiring smooth and precise motion, epicyclic gears can be utilized to reduce motor torque ripple. By incorporating epicyclic gears with appropriate gear ratios, the torque ripple generated by the motor can be smoothed out, resulting in smoother and more uniform motion.
In summary, the purpose of using epicyclic gears in robotics and automation is to provide a compact size, high torque transmission, speed control, backlash minimization, efficiency and durability, modular design, and reduction of motor torque ripple. These advantages make epicyclic gears a valuable choice for achieving precise motion control, optimizing system performance, and enhancing the overall efficiency and reliability of robotic and automation systems.

Can you explain the concept of planetary gear sets in epicyclic systems?
In epicyclic gear systems, planetary gear sets play a fundamental role. Here’s a detailed explanation of the concept:
1. Definition:
A planetary gear set consists of three main components: a central sun gear, multiple planet gears, and an outer ring gear, also known as the annular gear. The planet gears are typically mounted on a carrier, which allows them to rotate around the sun gear.
2. Gear Engagement:
The teeth of the planet gears mesh with both the sun gear and the annular gear. The sun gear is positioned at the center and is surrounded by the planet gears. The annular gear has internal teeth that engage with the planet gears, while its external teeth provide the outer boundary of the gear system.
3. Gear Motion:
The motion of a planetary gear set involves a combination of rotational and orbital motion. When the sun gear rotates, it causes the planet gears to rotate around their own axes while simultaneously orbiting around the sun gear.
4. Gear Ratios:
Planetary gear sets offer various gear ratios depending on how the components are held or driven. The gear ratio is determined by the number of teeth on the gears and the arrangement of the gear engagement. By fixing one component and driving another, different gear ratios can be achieved.
5. Gear Functions:
The arrangement and motion of planetary gear sets allow for a wide range of functions in epicyclic systems, including:
- Speed Reduction: By fixing the sun gear and rotating the carrier or annular gear, the output speed can be reduced compared to the input speed.
- Speed Increase: By fixing the carrier or annular gear and rotating the sun gear, the output speed can be increased compared to the input speed.
- Directional Changes: Changing the gear engagement arrangement allows reversing the direction of rotation between the input and output shafts.
- Torque Multiplication: The gear ratios in a planetary gear set enable torque multiplication, providing mechanical advantage between the input and output.
- Braking: By holding specific components, such as the sun gear or the carrier, the gear system can act as a brake, preventing rotation or controlling the speed of the output shaft.
Planetary gear sets are widely used in various applications, including automotive transmissions, gearboxes, power tools, and robotics. Their compact size, versatility in gear ratios, and ability to perform different functions make them essential components in many mechanical systems.


editor by CX 2023-11-03